This file contains an expl anation of all CodeCheck conmand-1|ine options, and
an al phabetized list of all CodeCheck variables and functions, with a very
brief definition. This docunent is valid for CodeCheck version 9.01

Copyright (c) 1988-2001 by Abraxas Software, Inc. Al rights reserved.

CodeCheck conmand-1ine options are not case-sensitive. The avail abl e options:

-B Instruct CodeCheck that braces are on the sane nesting | evel as material
surrounded by the braces. If this option is not specified, then CodeCheck
assunes that the braces are at the previous nesting |level. This option
only affects the predefined variable lin_nest_|evel.

-C Suppress type checking.
-D Define a macro. The nane of the macro nust follow inmediately. Thus
check -dDO FOREVER=for(;;)
has the sane effect as starting the source file with
#defi ne DO FOREVER for(;;)
Macros defined on the conmand-1ine nmay not have argunents.

-E Do NOT ignore tokens that are derived from macro expansi on when perform
ing counts, e.g. of operators and operands. The default (-E not given)
is for CodeCheck to ignore all nacro-derived tokens when counting.

-F Count tokens, lines, operators, or operands when readi ng header files.
The default (-F not specified) is for CodeCheck not to count tokens,
lines, operators, or operands when readi ng header files.

-G Read each header file only once per nodule. CAUTION. Sone header files
may be intended to be read multiple times within a nodul e!

-1 Specify a path to search when | ooking for header files. Use a separate
-1 for each path. The pathname nust follow imediately, e.g.
check -1lusr/metaware/ headers src.c

-H List lines fromall header files in the listing file.

-J Suppress all error nessages generated by CodeCheck. This option does not
af fect warni ngs generated by CodeCheck rul es.

-K ldentify the dialect of Cto be assuned for the source files. Adigit
shoul d foll ow i nmedi ately, corresponding to the dialect. The dial ects of
C that are currently supported include:

0 => K&R (1978) C

1 => ANS|I standard C

2 => K&R C with commpn extensions

3 => ANSI Cwth commpn extensions

4 => Standard C++ (as defined in Ellis & Stroustrup, 1990)
5 => Symantec C++

6 => Borland C++

-N

7 => Mcrosoft C++

8 => |BM Visual Age C++

9 => Metrowerks CodeWarrior C++
10 => VAX or HP/ Apollo C

11 => Metaware High C

x* THE DEFAULT IS K3 (ANSI C with compn extensions) **

If this option is not specified, then CodeCheck will assume that the
source code is ANSI Cwith extensions (-K3). If option -Kis specified
with no digit follow ng, then CodeCheck will assume that the user neant
-KO, i.e. strict K&R (1978) C with no extensions.

Make a listing file for the source file or project, with CodeCheck
nmessages i nterspersed at appropriate points in the listing. The nane
of the listing file should be given i mediately after the -L:

check -Lnopdule.lst nodule.c
If no nane is specified, CodeCheck will use the nane "check.Ilst".
The listing file will be created in the current directory, unless a
target directory is specified with the -Q option

List all macro expansions in the listing file. Each line containing a
macro is first listed as it is found in the source file, and then listed
a second time with all macros expanded. The -L option is redundant if -M
is specified. If -L is found without -M then the listing file created
by Code Check will not exhibit nacro expansions.

Al'l ow nested /* comments */.

-NEST Allow C++ nested classes. Wien this optionis in effect every union

- S0

struct, or class definition constitutes a true scope that can contain
nested tag definitions. Options -K5, -K6 and -K7 inply -NEST, but -K4
does not. Use -K4 and -NEST if your C++ conpiler is based on AT&T C++
version 3.0. DO *NOT* use -NEST if your C++ conpiler is based on any
version of C++ earlier than AT&T 3.0.

Append all CodeCheck stderr output to the file stderr.out. This is
useful for those operating systenms (e.g. M5-DOS) that do not permt
any redirection or piping of stderr output.

Show progress of code checking. When this option is given, CodeCheck will
identify each file in the project as it is opened.

Specify an output directory. The pathnane for the directory nust follow
i medi ately, e.g.

check - Qusr/ nyout put
When this option is specified, CodeCheck will create all of its output
files in the given directory. These output files include the prototype,
listing, and rul e object files.

Specify a rule file. The name of the rule file nmust follow inmediately,
e.g. check -Rmyrul es mysource.c The extension ".cc" on the rule file

shoul d be omtted. CodeCheck will |ook for an up-to-date object file
of the given nane and extension ".cco". If this is not found, then
CodeCheck will recompile and use the rule file of the given nane.

Read but do not apply rules to any header files. **% DEFAULT ***

-S1 Apply rules to header files given in double quotes.
-S2 Apply rules to header files given in angle brackets.
-S3 Apply rules to ALL header files.

-SQL Enabl e enbedded SQ. st at enents.

-T Create a file of prototypes for all functions defined in a project. The
nane of the prototype file should be given inmediately after the -T:
check -Tprotos.h source.c
If no nane is specified, CodeCheck will use the nane "myprotos. h".
The prototype file will be created in the current directory, unless a
target directory is specified with the -Q option

-U Undefine a macro constant. The nane of the macro nust follow inmediately.
Thus check -UMBDOS src.c has the effect of treating src.c as though it
contai ned the preprocessor directive #undef MSDCS.

-V Available for users. May be followed by an integer or a nane.
-W Available for users. May be followed by an integer or a nane.
-X Available for users. May be followed by an integer or a nane.
-Y Available for users. May be followed by an integer or a nane.

-Z Suppress cross-nodul e checking. Macro definitions and variabl e and
function declarations will not be checked for consistency across the
nmodul es of a project.

Every letter used as an option is renmenbered by CodeCheck and passed to the
rule interpreter. CodeCheck rules can refer to and nodify these options via
the functions option() and set_option() for integer values, and str_option()
and set_str_option() for string val ues.

An al phabetized master list of all CodeCheck variables and functions follows.
See the glossary below for definitions of terms used, or see the manual for
det ai |l ed descri ptions.

all _digit() 1if a string consists only digits.

all _ower () 1if a string consists only |ower case letters.
al | _upper () 1if a string consists only upper case letters.
atoi () Convert a string into integer

at of () Convert a string into float.

cl ass_namne() Name of current C++ class or struct.

cnv_any to_bitfield
cnv_any_to_ptr

1if anything is inplicitly converted to a bitfield.

1if a non-pointer is inplicitly converted to a pointer
cnv_bitfield to any 1 if a bitfieldis inplicitly converted to anything.
cnv_const _to_ptr 1if aconst type is inplicitly converted to a non-const.
cnv_float_to_int 1if afloat is inplicitly converted to an integer
cnv_int _tofl oat 1if an integer is inplicitly converted to a float.
cnv_ptr_to ptr 1if apointer is inplicitly converted to a pointer
chv_si gned_to_any 1if asigned integer is inplicitly converted to unsigned.
cnv_truncate 1if an integer or float is inmplicitly truncated
conflict file() File in which conflicting definition occured. Valid ONLY
when dcl _conflict or pp_macro_conflict is triggered.

conflict _line

corr(x,y)
dcl _3dots
dcl _abstract
dcl _access

dcl _aggr
dcl _all _upper
dcl _anbig

dcl _any_upper
dcl _array_di m(k)
dcl _array_size
dcl _auto_init

dcl _base
dcl _base_root

dcl _base_name()

Li ne on which conflicting definition occured. Valid ONLY
when dcl _conflict or pp_nmacro_conflict is triggered.

Fl oat correlati on between statistics x and y.

when an ellipsis (...) is found in a declaration
when an abstract declarator is encountered.

when a C++ nenber has public access,

when a C++ nenber has protected access,

when a C++ nenber has private access.

when an aggregate type is decl ared.

when a declarator name is all uppercase.

If this declarator nanme natches anot her decl arator
first N characters, and N>5, then dcl_anmbig is N

1 when a decl arator nanme has any uppercase letters.
If level k of the type of this declarator is an array,
then this function returns the array dinmension, or -1 if
no size was decl ared.

Total size of a declared array, -1 if no size is given,
product of dinensions if the array is multidinmensional

1 when an auto variable is initialized.

Base type of the declaration. For val ues see check. cch.
Type fromwhich the type of dcl_base is derived from

If the type of dcl_base is not a user-defined type,

dcl _base root has sane val ue as dcl _base. For val ues
see check. cch.

The base type of the current declarator

RPRPRNRPRORBR

on the

as a string.

dcl _base _nanme_root () The nane of type fromwhich type of dcl _base nane is

deri ved.

dcl _base_nane().
dcl _bitfield

dcl _bitfield anon
dcl _bitfield arith
dcl _bitfield_size
dcl _conflict

dcl _count

dcl _cv_nodifier
dcl _definition
dcl _enpty

dcl _enum

dcl _enum hi dden
dcl _explicit

dcl _extern

dcl _extern_anbig

dcl _first_upper

dcl _friend

dcl _from nmacro

dcl _function

dcl _function_fl ags

If the type of dcl_base nane is not a user-defined type,
dcl _base name_root () returns the sane val ue as

1 when a bitfield is decl ared.

1 when a bitfield has no nane.

1 when a bitfield width requires arithmetic cal cul ation
Size in bits of the specified bitfield.

1 when an identifier was declared differently el sewhere.
Use conflict_file() and conflict_line for Iocation

I ndex of declarator within the current declaration list.

1 when const or volatile is used as a non_ANSI nodifier
1 when a declaration is a definition, not a reference.
1 when an enpty declaration is found (no declarator).

1 when an enunerated constant is found.

1 when a declarator name hides an enunerated constant.
1 when a declarator has specifier "explicit".

1 when "extern" is explicitly specified.

If this extern declarator nane matches another extern
declarator on the first N characters (regardl ess of case),
and N>5, then dcl_extern_anmbig is N

Nurmber of initial uppercase letters in declarator
1 when a C++ friend is declared.

1 when declarator nane is derived froma nacro expansi on
1 when a function or function typedef nanme is decl ared.
Inclusive OR of the follow ng conditions:

namne.

1 when this function is inline, (C+4)

2 when this function is virtual, (C+4)

4 when this function is pure, (C+4)

8 when this function is pascal, (DCs, Os/2, Mac)
16 when this function is cdecl, (DCS & Os/ 2)

dcl _function_ptr
dcl _gl obal
dcl _hi dden

dcl _Hungari an

dcl _ident | ength
decl _init_arith

dcl _initializer

dcl _inline

dcl | abel overl oad
dcl _level (k)

dcl _level flags(k)

dcl _levels
dcl | ocal

dcl _l ong_f I oat
dcl _menber

dcl _mutabl e

dcl _name()

dcl _need_3dots
dcl _no_prototype
dcl _no_specifier
dcl _not decl ared
dcl ol dstyle

dcl _paraneter

dcl _parm count
dcl _parm_hi dden

dcl _pure

dcl _scope_nane()
dcl _sinple
dcl _si gned

dcl _static
dcl _storage_first

dcl _storage flags

dcl _tag_def
dcl _tenplate

1 when an indentifier

32 when this function is interrupt, (DOS & Os/ 2)
64 when this function is | oadds, (DOSs & Os/ 2)
128 when this function is saveregs, (DCS & Os/ 2)
256 when this function is fastcall. (DCS & Os/ 2)
1024 when this function is explicit. (C+4)
1 when a pointer to a function is declared.
1 when a variable or function has file scope.

1 when
1 when

hi des another identifier
nane uses the Hungarian convention

a local identifier
a decl ar at or

Nunmber of characters in declared identifier name.

1 when an initializer uses arithmetic.

1 when an initializer is found.

1 when a C++ function is inline.

1 when a declarator nane nmatches a | abel nane.

O0if level k of the type of this declarator is SIMPLE
1if level k of the type of this declarator is FUNCTI ON
2 if level k of the type of this declarator i s REFERENCE
3 if level k of the type of this declarator is PO NTER
4 if level k of the type of this declarator is ARRAY.
Type qualifier flags for level k of the type of this
declarator. Inclusive OR of the follow ng qualifiers:

1 for
2 for
4 for
8 for
16 for
32 for
64 for the
128 for the
Nunmber of
1 when a
1 when a
1 when a
2 when a
3 when a
(C++

t he
t he
t he
t he
t he
t he

constant flag
volatile flag
near flag

far flag

huge fl ag
export flag

(DGCS only)
(DGCS only)
(DCS only)
(W ndows only)
based fl ag (Mcrosoft C C++ only)
segment flag (Mcrosoft C C++ only)
levels in the type of this declarator
| ocal identifier is declared.
variable is declared "long float".
uni on menber identifier is declared,
struct nenber identifier is declared,
class nenber identifier is declared;
menbers may be: vars, fcns, typedef names).
is declared 'nutable'.
Current decl arator nane.
1 when a paraneter list concludes with a coma.
1 when a function definition has no prototype in scope.
1 when a declaration has no type specifiers at all
1 when an ol d-style function paraneter is not decl ared.
1 when an ol d-style (unprototyped) function is decl ared.
I ndex of function paranmeter (1 for first, etc.).
Nurmber of formal paraneters in a function definition.
1if a function paraneter is hidden by a |ocal variable.
1 when a C++ pure nenber function is declared.
The scope nanme of current declarator.
1 when sinple variable (not pointer or array)
1 when the "signed" type specifier is explicitly used.
1 when a declarator is static.
1 when a storage class specifier is preceded by a type
specifier in a declaration (e.g. short typedef xyz).
Set to an integer which identifies the storage cl ass.
For val ues of the flags, see check.cch
1 when a tag is defined as part of a type specifier
Nurmber of C++ function tenplate paraneters.

i s decl ared.

dcl _type_before

dcl _typedef

dcl _typedef _dup
dcl _underscore
dcl _union_bits
dcl _union_init
dcl _unsi gned

dcl _variable

dcl _virtual

dcl _zero_array
def i ne(nane, body)

eprintf()
err_nessage()

err_syntax

exit(n)
exp_enpty_initial
exp_not _ansi
exp_oper ands
exp_operators
exp_t okens
fatal (n, str)
fcn_aggr
fcn_array
fcn_begin
fcn_comlines
fcn_deci sions
fcn_end
fcn_exec_lines
fcn_H operands
fcn_H operators
fcn_high
fcn_locals
fcn_ | ow
fcn_nmenbers
fcn_no_header
fcn_nane()
fcn_nonexec
fcn_oper ands
fcn_operators
fcn_register
fecn_sinple
fcn_t okens
fcn_total _lines
fcn_u_operands
fcn_u_operators
fcn_uH_oper ands
fcn_uH operators
fcn_unused
fcn_white |ines
file_name()
file_path()

1 when the return type of a function definition is on
the line BEFORE the line with the function nane.

1 when a typedef nane is decl ared.

1 when a duplicate typedef nanme is decl ared.

Nurmber of | eadi ng underscores in declarator nane.

1 when a bitfield is declared as a nenber of a union

1 when a union has an initializer

1 when a declarator is unsigned.

1 when a variable (not a function) is declared.

1 when a menber function is declared virtual

1 when an array has zero | ength.

Define a macro with given name and body. Both the nane and

body nust be strings. The nmacro may not have argunents.

Sane as printf() except print to stderr instead of

st dout .

Returns t he nessage body of warning nessage nunbered as

CXXXX

Set to an integer when CodeCheck encounters a syntax error

which is CXXXX. The value of the integer is 1 greater

t han val ue XXXX

Quit CodeCheck with return value n

zer 1 when an enpty initializer, e.g. {}, is found.

*

* * * Ok * X X

EE T B T

1 when a non- ANSI expression is found.

Nurmber of operands in the current expression.

Nurmber of operators in the current expression.

Nurmber of tokens in the current expression.

I ssue fatal error #n with nessage str.

Nurmber of |ocal aggregate variables declared in function
Total nunber of local array elements declared in function
1 when a function definition begins (open brace).

Nurmber of pure comment lines within a function

Nurmber of binary decision points in a function

1 at the end of function definition (close brace).
Number of lines in function with executabl e code.

Nurmber of Hal stead operands in a function.

Nurmber of Hal stead operators in function

Nurmber of high-level statenents in a function.

Nurmber of |ocal variables declared in a function

Nunmber of |owlevel statenents in a function.

Nunmber of |ocal union, struct & class nmenbers in function.
1 when a function definition has no coment bl ock

Name of current function

Nunmber of non-executable statenments in a function.
Nurmber of operands in a function.

Nurmber of operators in a function.

Nurmber of register variables declared in a function.
Nurmber of |ocal sinple variables declared in a function.
Nunmber of tokens found in a function.

Nunmber of lines in the function definition.

Nurmber of uni que operands in a function.

Nurmber of uni que operators in a function

Nurmber of uni que Hal stead operands in a function.

Nurmber of uni que Hal stead operators in a function

Nunmber of unused variables in a function.

Nurmber of l|ines of whitespace in a function

Name of the current source or header file.

Name of the current source or header file's path.

fclose()
fopen()
force_incl ude()

fprintf()

fscanf ()

header _name()
header _pat h()

hi st ogram(x, a, b, n)

idn_array_di m(k)

i dn_base

i dn_base_nane()
idn_bitfield

i dn_const ant
idn_filenane()
i dn_function

i dn_gl obal

i dn_l evel (k)

i dn_l evel _flags(k)

idn_levels
idn_line

i dn_l ocal

i dn_nenber

i dn_name()

i dn_no_prototype
i dn_not _decl ared
i dn_par anet er

i dn_storage_fl ags

i dn_vari abl e

i dentifier(nane)

i gnor e(nane)

i ncl uded(fil enane)
i sal pha(int)
isdigit(int)

i sl ower (int)

i supper (int)
keywor d(nane)

| ex_ansi _escape

Close a file, identical to ANSI standard fclose function
pen a file, identival to ANSI fopen function.

Force a specified file to be included at the begi nning of
a nodul e.

Qutput to a file, identical to ANSI fprintf function
Input froma file, identical to ANSI fscanf function
Nane of the header that is about to be #included.

Path to the header that is about to be #included.

Prints a histogramof statistic x on stdout, using n bins
between a (m ni num val ue) and b (nmaxi num val ue).

If level k of the type of this identifier is an array,
then this function returns the array dinmension, or -1 if
no size was decl ared.

Set to the base type of the identifier.
check. cch.

The base type of the identifier, as a string.
1if the identifier is a bitfield.

1if this identifier is an enum constant.

The file in which the identifier was declared.

For val ues see

1if this identifier is a function nane.

1if this identifier has file scope and external |inkage.
Oif level k of the type of this identifier is SIMPLE
1if level k of the type of this identifier is FUNCTI ON
2 if level k of the type of this identifier is REFERENCE
3if level k of the type of this identifier is PO NTER,

4 if level k of the type of this identifier is ARRAY.
Type qualifier flags for Ilevel k of the type of this

identifier. Flag bit constants are:

1 for the constant flag

2 for the volatile flag

4 for the near flag (DGCS only)

8 for the far flag (DGCS only)

16 for the huge flag (DGCS only)

32 for the export flag (W ndows only)

64 for the based flag (Mcrosoft C C++ only)
128 for the segnent flag (Mcrosoft C C++ only)

Nurmber of levels in the type of this identifier.

Set to the line nunber within the file in which this
identifier was declared.

1if this identifier has |ocal scope.

1if this identifier has class scope.

The nane of the identifier, as a string.

1if thisis a function call with no prototype.

1if thisis a function call with no declaration

1if this identifier is a function paraneter.

Set to an integer which identifies the storage cl ass of

the identifier. For values of the flags, see check.cch
1if this identifier is a variable.

Tri ggers whenever the naned identifier is used.

Instructs CodeCheck to ignore the naned token

if the argunment header file has been included.

if the argunment is an al phabetic character (a-z or A-2).
if the argunent is a decimal digit character (0-9).

if the argunent is a | owercase al phabetic character

if the argunment is an uppercase al phabetic character
Triggers whenever the naned keyword is used.

Set to "a', 'v', or '?', respectively, when \a, \v,

PR R RRE

or \?

| ex_assenbl er
| ex_backsl ash
| ex_bad_call

| ex_bi g_oct al

| ex_c_comment

| ex_cpp_conment
| ex_char _enpty
| ex_char | ong

| ex_const ant

| ex_enum conmma
| ex_fl oat
| ex_hex_escape

lex_initializer

lex_intrinsic

| ex_invisible

| ex_key no_space
| ex_keyword
lex_lc_long

| ex_l ong_fl oat

| ex_macro

| ex_macro_t oken
| ex_net awar e

| ex_nest ed _conment
| ex_nl _eof

| ex_nonst andar d
| ex_not KR escape
| ex_not _nani f est
lex_null _arg

| ex_num escape

| ex_punct _after

| ex_punct _before
| ex_radix

| ex_str_concat
lex_str_length

| ex_str_nacro
lex_str_trigraph
| ex_suffix

| ex_t oken

I ex_trigraph

| ex_unsi gned

| ex_wide

| ex_zero_escape

lin_continuation

is found within a string or character literal

1 when assenbl er code is detected.

1 when a line is continued with a backsl ash character

Di fference between nunber of actual argunments and nunber
of formal argunents when a nmacro function is expanded.
when the digit 8 is found in an octal constant,

when the digit 8 is found in an octal constant.

when the conment is wapped by /**/

when the conment begins with //

when the enpty character constant is found ('').

when a character constant is |onger than one character
when an enunerated constant is found,

when a character constant is found,

when an integer constant is found,

when a float constant is found,

when a string constant is found.

when a list of enunerated constants ends with a conma.
when a nuneric constant has the suffix f or F.

Set to the nunber of hex digits read when a hexadeci nal
escape sequence (e.g. '\x1A') is found.

when an initializer is the integer zero,

when an initializer is a nonzero integer

PR UODMWONRRRREROO®

when an initializer is a character literal

is a float or double constant,
when an initializer is a string, and
when an initializer is anything el se.

i
i
i

when an initializer
i
i
i

when an intrinsic (built-in) function is called.

when a C++ nested tag nane is used w thout a scope.

when certain keywords are not followed by whitespace.
when the current token is a reserved keyword.

when a nuneric constant has suffix | owercase e

when a float constant has suffix L or I.

when a macro is about to expand.

when a token originates froma nacro expansi on

when any Metaware | exical extension is found.

when a /*..*/ comment is found nested within another
when a nonenpty source file does not end with a new ine.
when a character not in the standard C set is found.
when an escape character is not in the K& (1978) set.
when a nunber other than 0 or 1 is not a macro.

when an argunment is onmitted froma macro function call.
Set to the numeric value when an escape sequence is found.
1 when a conma or semicolon is not followed by whitespace.
1 when a conmma or senicolon is preceded by whitespace.
Radi x of an integer constant (2, 8, 10, or 16).

1 when two strings are separated only by whitespace.
Length of a string literal (not counting termnal zero).

1 when a macro nane is found within a string literal

1 when a trigraph is found within a string literal

1 when a nuneric constant has a letter suffix.

I ndex of the token in the current Iine (1 = first token).

PRRPRRPRPRPRPRRRPRRPREPRPRPRLRROAWNER

when an ANSI trigraph is found.
when a nuneric constant has the U or u suffix.
when a string or character constant has the L prefix.

when an escape sequence in a character literal is zero,
when the escape sequence is in a string literal
when an expression is continued fromthe previous |ine.

PR RRE R

lin_continues
lin_dcl_count
[in_depth
lin_end
lin_has_code

i n_has_comrent
lin_has_|abel
i n_header

lin_include_kind

[in_include_name()
[in_indent _space
lin_indent _tab
lin_is_coment

lin_is_exec
lin_is white
l[in_length

lin_nest_|evel
I in_nested_conmmrent

i n_new comment

i n_nunber

i n_operands
lin_operators
lin_preprocessor

lin_source
lin_suppressed
lin_tokens
lin_within_class

lin within function

lin within_tag

[ine()

1 when an expression is continued on the next line.
Nunmber of declarator names on the current |ine.
Depth of #include file nesting for the current |ine.
1 when the end of a line is found.

1 when a line contains code of any sort.

1 when a line contains a nonenpty coment nateri al

1 when a line contains a | abel

1if the line comes froma project header

2 if it comes froma system header

1if the line includes a project header

2 if the line includes a system header

The file nane this line includes.

Nurmber of spaces before the first nonwhite character
Nurmber of tabs before the first nonwhite character

1 when a line contains only coment nateri al

1 when a |ine contains executabl e code.

1 when a line is only whitespace or enpty conment.
Length of the line in characters, not counting new i ne.
The statenent nesting (indentation) |level. See option -B.
1 when a /*..*/ comment is found nested wi thin another
now obsol ete, and replaced by | ex_nested coment.

1 when a // comment is found. Cbsolete now, replaced with
| ex_cpp_conment

Index of the current Iine within the current file.
Nurmber of operands found on the current |ine.

Nurmber of operators found on the current line.

the current line begins with #.

1 for line with #define,

2 for line with #undef,

3 for line wth #include,

4 for line with #if,

5 for line with #ifdef,

6 for line with #ifndef,

7 for line with #el se,

8 for line with #elif,

9 for line with #endif,

10 for line with #pragma,

11 for line with #line,

12 for line with #error

13 for line with #asm

14 for line with #endasm

15 for line with #c_include,

16 for line with #r_include,

17 for line with #rc_include,

18 for line with #include_next,

19 for line with #option

1if it is not froma header file.
1if it is suppressed by the preprocessor
Nunber of tokens on the current |ine.

1 when the current line is within a class definition

2 when it is in a nenber function but outside the class.
1if the current line is within a function definition
1if the current line is within an enuneration

2 if it is within a union definition,

3if it is within a struct definition

4 if it is within a class definition

The current source code line, as a string.

l 0g2(x)

macr o(nane)

macr o_def i ned(namne)
maxi mum(x)

mean(x)

medi an(x)

nm ni mum(x)
nod_aggr

nod_arr ay
nod_begi n
nod_cl ass_I| i nes(k)

* %k

nod_cl ass_nane(k)
nmod_cl ass_t okens(k)

nod_cl asses

nmod_com | i nes *
nod_deci si ons *
nod_end

nod_exec_lines
nod_extern
nod_functions
nod_gl obal s
nod_H oper ands
nod _H operators
nod_hi gh

nmod_| ow
nod_nmacr os
nod_nenber s
nod_name()
nod_nonexec
nod_oper ands
nod_operators
nod_si npl e
nod_static
nod_t okens
nmod_total |ines
nod_u_oper ands
nod_u_operators
nod_uH_oper ands
nmod_uH operators
nod_unused
nod_war ni ngs
nod _white |ines *
node(x)

ncases(x)

next char ()
new_t ype(name, k)

* 0%k kX X F

*

¥ 0%k 3k Sk Xk kX Xk

no_undef (nane)
op_add
op_add_assi gn
op_address
op_and_assi gn
op_array_din(j, k)

The | ogarithm base 2 of x.

Triggers when nacro <nane> is about to be expanded.

1 if macro <name> has been defi ned.

The maxi mum val ue of statistical variable x.

The mean of statistical variable x.

The nmedi an of statistical variable x.

The m ni mum val ue of statistical variable x.

Nurmber of gl obal array, union, struct, or class variables.
Nurmber of gl obal array el enents declared in a nodul e.
Triggers at the beginning of a nodul e.

Total nunber of lines in C++ class k, including nenber
function lines. Use 0 <= k < npod_cl asses.

Nane of C++ class k. Use 0 <= k < npd_cl asses.

Nurmber of tokens in C++ class k, including menber function
lines. Use 0 <= k < npd_cl asses.

Nunmber of naned cl asses, structs, & unions defined in a
nmodul e (includes tenplate cl asses).

Nurmber of nonenpty conment lines in a nodul e.

Nurmber of binary decision points in a nodul e.

Triggers at the end of a nodul e.

Nunmber of lines in nmodule with executabl e code.

Nurmber of gl obal variables declared with extern keyword.
Nurmber of functions defined in a nodul e.

Nurmber of gl obal variables declared in a nodul e.

Nurmber of Hal stead operands in a nodul e.

Nurmber of Hal stead operators in a nodul e.

Nurmber of high-level statenents found in a nodul e.
Nurmber of |owlevel statements found in a nodul e.

Nunmber of macros defined in a nodul e.

Nunmber of union, struct, or class nmenbers decl ared.

Name of the current nodul e.

Nurmber of non-executable statements in a nodul e.

Total nunber of operands used in a nodul e.

Total nunber of operators used in a nodul e.

Nurmber of |ocal sinple variables defined in a nodul e.
Nurmber of static global variables defined in a nodule.
Nurmber of tokens found in a nodul e.

Total number of lines in a nodule.

Nurmber of uni que operands used in a nodul e.

Nurmber of uni que operators used in a nodul e.

Nurmber of uni que Hal stead operands in a nodul e.

Nurmber of uni que Hal stead operators in a nodul e.

Nurmber of static global variables declared but not used.
Nurmber of warni ngs issued by CodeCheck for a nodul e.
Nurmber of white and enpty coment |ines in a nodule.

The node (nost common val ue) of a statistical variable.
The nunber of cases recorded in a statistical variable.
The | ookahead character at the currently parsed position
Use this function ONLY to declare an INTRINSIC type that
your conpiler recogni zes without a type declaration

1 if the argunent has not been previously #undefi ned.

+ the binary addition operator (NOT the unary plus).
+= the add-assign operator

& the address-of operator.

&= the bitw se-and-assi gn operator

If level k of the type of operand j is an array, then
this function returns the array dinmension, or -1 if no

op_arrow
op_assi gn
op_assoc
op_base(j)
op_base_name(j)
op_based
op_bitfield(j)
op_bit_and
op_bit_not
op_bit_or
op_bit_xor
op_bitwi se
op_break
op_call

op_cast

op_cast _to_ptr
op_catch
op_close_angl e

op_cl ose_brace
op_cl ose_bracket
op_cl ose_funargs
op_cl ose_paren

op_cl ose_subscri pt

op_colon_1
op_col on_2
op_conma
op_cond
op_conti nue
op_decl ar at or
op_del ete
op_destroy
op_div

op_di v_assign
op_do

op_el se
op_equal
op_execut abl e
op_for
op_function()

op_goto
op_hi gh
op_if

op_i ndirect
op_infix
op_init

op_iterator
op_iterator_cal
op_keyword

op_l eft_assign
op_left_shift
op_l ess

op_l ess_eq
op_level (j, k)

si ze was decl ar ed.

->

=>

t he
t he
t he

i ndi rect menber sel ector operator
assi gnnment operator.
Met awar e associ ati on- oper at or

Base type of operand j. For return val ues see check. cch.
The base type of operand j as a string.

>

1
&
|
AN

- v el N N b

~ -

<<=
<<
<
<=
Oif
1if
2if

t he

t he
t he
t he
t he
Any
The
The
Any

M crosoft based operator

if operand j is a bitfield.

bi tw se-and operator.

bi tw se-conpl enent operator.

bi tw se-incl usive-or operator.

bi t w se- excl usi ve-or operator.

bitwi se operator is used.

"break" keyword.

function-call operator

cast operator (including C++ function-Ilike casts).

A cast-to-pointer in the form (Type *).

The
t he

"catch" keyword
right angle bracket, used as a C++ tenplate

delinmter.

t he
t he
t he
t he
t he
t he
t he
t he
t he
The
Any
The
t he
t he
t he
The
The
t he
Any
The
The
The
Any
The
t he
Any
t he
t he
t he
Any
t he
t he
t he
t he

right curly brace.

ri ght square bracket.

end- argumnent -1 i st parent hesi s.

ri ght parenthesis.

end- of - subscri pt operator.

unary colon (e.g. after a | abel).

bi nary colon (e.g. in a conditional expression).
conmma operator (NOT the comma separator).
condi ti onal operator.

"continue" keyword.

operator found within a declaration
C++ del ete operator

C++ destructor synbol.

di vi si on operator.

di vi de- assi gn oper at or

"do" keyword.

"el se" keyword

equal ity-test operator

operator found w thin executabl e code.
"for" keyword.

nane of a function called or decl ared.
"got 0" keyword.

hi gh- precedence oper at or

"if" keyword.

i ndirection operator (NOT the declarator symnbol).
i nfix operator.

initialization operator

Met aware iterator-definition operator.
Met aware iterator-call operator.
execut abl e keyword.

shift-left-assign operator

shift-left operator.

| ess-than operator.

| ess-t han-or-equal -to operator

| evel k of the type of operand j is SIMPLE
I evel k of the type of operand j is FUNCTI ON
I evel k of the type of operand j is REFERENCE

op_level flags(j,k)

op_l evel s(k)

op_l og_and
op_l og_not
op_l og_or
op_l ow

op_macro()
op_macro_cal
op_medi um
op_menber
op_nenptr
op_nensel
op_nore
op_nore_eq
op_mul

op_mul _assi gn
op_negat e
op_new

op_not _eq
op_open_angl e
delimter.
op_open_brace
op_open_bracket
op_open_funargs

op_open_par en
op_oper ands
op_or _assign

3if level k of the type of operand j is PO NTER,

4 if level k of the type of operand j is ARRAY.

Type qualifier flags for level k of the type of operand j.
Flag bit constants are:

1 for the constant flag

2 for the volatile flag

4 for the near flag (DGCS only)
8 for the far flag (DGCS only)
16 for the huge flag (DGCS only)

32 for the export flag (W ndows only)
64 for the based flag (Mcrosoft C/ C++ only)
128 for the segnent flag (Mcrosoft C C++ only)
Nurmber of levels in the type of operand k of the operator
&& the |ogical-and operator.
! t he | ogi cal -negati on operator.
|| the logical-or operator.
Any | ow precedence operator.
The nane of the macro function about to be expanded.
(t he macro-functi on-expand operat or
Any operator that is neither |ow nor high-precedence.
. t he menber-of operator.
->* the C++ nenber-pointer operator.
.* the C++ nmenber-sel ector operator
> t he greater-than operator
>= the greater-than-or-equal -to operator
* the multiplication operator
*= the multiply-assign operator
- t he unary negati on operator (NOT subtraction).
The C++ new operator.
= the not-equal -to operator
< the left angle bracket, used as a Ct+ tenplate

{ the left curly brace.
[the I eft square bracket.
(the function-argunment-Ilist parenthesis. Use
op_decl arator to determ ne whether the context is a
function declaration or a function call.
(the I eft parenthesis.
The nunber of operands used by an executabl e operator
| = the bitw se-or-assign operator

op_par ened_oper and(k)

op_pl us

op_poi nter
op_post _decr
op_post _i ncr
op_postfix
op_pre_decr
op_pre_incr
op_prefix
op_punct
op_reference
op_rem

op_rem assign
op_return
op_right _assign
op_right _shift

1if the kth operand of a operator is in parentheses.
+ the unary plus operator (NOT addition).
* the pointer-to declaration operator (NOT indirection).
-- the post-decrenent operator
++ the post-increment operator
Any postfix operaotr.
-- the pre-decrenent operator
++ the pre-increnent operator
Any prefix operator.
Any punctuation operator.
& the C++ reference-to declaration operator.
% the remmi nder operator.
% the reminder-assi gn operator
The "return" keyword.
>>= the right-shift-assign operator
>> the right-shift operator

op_scope
op_semi col on
op_separ at or
op_si zeof
op_space_after
op_space_before
op_sub_assi gn
op_subscri pt
op_subt
op_switch

op_t hrow
op_try
op_while_ 1
op_while_ 2
op_white after
op_white_before
op_xor _assi gn
option(char c)
pow(X, y)

pp_ansi

pp_ar g_count
pp_arg nultiple
pp_arg_paren
pp_arg_string
pp_arith
pp_assi gn
pp_bad_white
pp_beni gn
pp_comrent
pp_const

pp_defi ned
pp_depend
pp_elif
pp_enpty_argli st
pp_enpty_body
pp_endi f
pp_error

pp_error_severity(

directive
| NFORIVATI ONAL
cause

pp_i f_depth
pp_i ncl ude

pp_i ncl ude_depth
pp_i nclude_white
pp_keywor d

pp_l ength
pp_| ower case

.. the C++ scope operator.
; t he seni col on.
, t he conma separator (NOT the comma operator).
The sizeof operator.
An operator is followed by a space character
An operator is preceded by a space character
-= the subtract-assign operator
t he subscript operator.
- the binary subtraction operator (NOT unary negation).
The "switch" keyword.
The "throw' keyword.
The "try" keyword.
The "while" keyword (unless part of do-while).
The "while" keyword when used with "do".
An operator is followed by whitespace.
An operator is preceded by whitespace.
A= the exclusive-or-assign operator.
1if the command-line option -c is in effect
Standard ANSI C pow functi on.
1 whenever a new ANSI preprocessor feature is encountered
Nurmber of formal paraneters in a nmacro definition.
if a formal paranmeter is used nore than once.
i f formal paraneter is not enclosed in parentheses.
i f formal paraneter is found within a string
i f conditional requires an arithnetic cal cul ation
i f macro definition is a sinple assignment.
if whi t espace character is neither a space nor a tab
if a macro is redefined equivalently.
if two tokens in a nmacro are separated by a comment.
if a macro is a manifest constant.
if the "defined" preprocessor function is found.
i f #undef is used on a nacro required by another nacro.
if the #elif directive is found.
if a nmacro function definition has no paraneters.
if the definition of a nacro has no body.
if the #endif directive is found.
if the #error directive is found.

SRS IO

RPRRPRRPRRPRPRPRRRREPRPRRRRERE

int level)

Set the level of severity when dealing with preprocessor
#error. The val ue of paraneter |evel can be either
which will nmake CodeCheck keep going or ERROR which will

CodeCheck to termnate.
Dept h whenever a conditional (e.g. #if) is activated.

i f #include pathnane in"", froma macro expansion
i f #include pathnane in"", not froma nacro,
in <> froma nmacro expansion

i f #include pathnane is in <> not froma nmacro,

i f #include pathnane is not enclosed (Metaware only).

if #include filenane is not enclosed (Vax VM5 only).
Dept h of inclusion when an #include is perforned.

1 if pathnane in an #include has | eadi ng whitespace.

1if a macro nane is a reserved ANSI or C++ keyword.
Length in characters of macro body (excluding whitespace).
1if a macro nane has any | owercase letters.

nu unnunuon

i
i
i f #include pathnane i
i
i
i

OO WNE

pp_Macr o

pp_macro_conflict

pp_macr o_dup
pp_name()
pp_not _ansi
pp_not _defi ned
pp_not _found
pp_over| oad

pp_paste
pp_paste fail ed

pp_pragma
pp_recursive
pp_relative
pp_seni col on
pp_si zeof
pp_stack
pp_stringi ze
pp_sub_keyword
pp_trailer
pp_undef
pp_unknown
pp_unst ack
pp_white_ after
pp_white before
pragna()
prefix()

prev_t oken()
printf()
prj_aggr
prj_array

prj _begin
prj_comlines
prj _conflicts
prj _deci sions
prj_end

prj _exec_lines
prj _functions
prj gl obals

prj _H operands
prj H operators
prj _headers

prj _high
prj _| ow

prj _macros

prj _menbers

prj _nmodul es

prj _name()

prj _nonexec

prj _operands
prj _operators
prj_sinmle

prj _tokens

prj total lines
prj _u_operands
prj _u_operators
prj _uH operands

Length in characters of a nacro nane.

1 when a macro was defined differently el sewhere. Use
conflict _file() and conflict_line for |ocation

1if anmacro is defined in nore than one file.

Name of the macro currently being defined.

i f any non- ANSI preprocessor usage i s found.

if a conditional uses an undefined identifier

if an #include file could not be found.

if a declared identifier matches a macro function nane.
if the ANSI paste operator (##) is found.

if a the operands for ## could not be pasted together.
if a #pragma directive is found.

if a recursive nacro definition is found.

if a macro definition ends with a senicol on

if adirective requires evaluating a "sizeof".
if a macro is redefined within a nodul e (except benign).
if the ANSI stringize operator (#) is found.

if adirective name is itself a nacro nane.

if adirective line ends with any nonwhite characters.
if an #undef directive is found.

if a directive unknown to CodeCheck is found.

if an #undef is used to unstack multiply-defined nacros.
Length of whitespace that precedes the # character.
Length of whitespace that follows the # character.
Triggers when the specified pragna is encountered.

See docunent ati on.

The previous lexical token (as a string).

The standard ANSI printf function.

Nurmber of external array, union, struct, class variables.
Nurmber of external array elements in a project.

Triggers at the beginning of a project.

Nurmber of nonenpty conment lines in a project.

Nurmber of conflicting macro definitions in a project.
Nurmber of binary decision points in a project.

Triggers at the end of a project.

Nurmber of line in project with executabl e code.

Nurmber of functions defined in a project.

Nurmber of external variables defined in a project.

Nurmber of Hal stead operands in a project.

Nurmber of Hal stead operators in a project.

Nurmber of distinct header files read in a project.

Nurmber of high-level statenents found in a project.
Nurmber of |ow | evel statenents found in a project.

Nurmber of distinct nmacros defined in a project.

Nurmber of external union, struct, or class nmenbers.
Nurmber of source nodules in a project.

Name of the current project file (.ccp extension).

Nurmber of non-executabl e statenments in a project.

Nurmber of operands found in a project.

Nurmber of operators found in a project.

Nurmber of external global variables defined in a project.
Nurmber of |exical tokens found in a project.

Nurmber of lines in a project.

Nurmber of uni que operands in a project.

Nurmber of uni que operators in a project.

Nurmber of uni que Hal stead operands in a project.

PR RPRRPRRPRRPRPRRRPREPREPRPRRRERRER

if an #include in a header file uses a relative pathnane.

prj _uH operators Nurmber of uni que Hal stead operators in a project.

prj _unused Nurmber of unused external variables in a project.

prj _war ni ngs Nurmber of CodeCheck warnings issued for a project.

prj _white_lines Nurmber of white and enpty coment |lines in a project.

quantile() Returns the specified quantile of a statistical variable.

reset () Del etes all cases recorded in a statistical variable.

renove_pat h() Rermove a include path which is set by earliest function
call set_str_option('l',...), if there is no include
path left, call to this function has no effect.

root () Current declarator nane after prefixes have been renoved.

scanf () Standard ANSI C scanf function.

set _header _opt S() Force the specified option -S on the specified file.

set _option() Sets the specified command-1ine integer option

set _str_option() Sets the specified command-line string option

ski p_macro_ops() Control if op_ variables to be set by operators derived from

nmacr o expansi on.

ski p_nonansi _i dent ()
Ski p non-ANS| identifiers beginning with '@,'$" or
Char paraneter of this function specifies the character
which leads the identifier. The value of the paraneter

[

only can be '@, '$ or '*'. The other characters have
no effect for this function.

sprintf() Standard ANSI C sprintf function.

sqrt() Standard ANSI C square-root function.

sscanf () Standard ANSI C sscanf function.

stdev() Standard deviation of a statistical variable.

st m aggr Nurmber of array, union, struct, class variables declared.

stm array Nurmber of |ocal array el enments decl ared.

st m bad_| abel 1if alabel is not attached to any statenent.

st m cases Nurmber of case or default |abels on this statenent.

st m cat chs Nurmber of handlers in try bl ock.

st m_cont ai ner Set to a value which indicates the kind of high-Ievel

statement that contains the current statement. See
stmkind (below for the possible val ues.

stm cp_assign Nurmber of conpound assi gnnent operators.

stm cp_begin At the open curly brace of a compound statement, this
variable is set to a value that indicates the kind of
statement that contains the conpound statenent. See
stmkind (below for the possible val ues.

stm dept h Nesting depth of a statenent within other statenents.
st m end Triggers at the end of any statenent.

stm end_trybl ock 1 when reach the end of whole try-block.

stmif_else 1if an if statement has el se cl ause.

stm goto 1if a goto enters a block with auto initializers.
stm.is_conp Set to the sane value as stmcp_begin, at the END of

a conpound statenent (the close curly brace).

stm.is_expr if a statenent is an expression.

i
stm.is_high if a statenent is conpound, selection, or iteration.
stmis_iter if a statenent is a for, while, or do-while.
stmis_junp if a statenent is a goto, continue, break, or return.
stmis_|ow if a statenent is an expression or junp statemnent.
stm.i s_nonexec if a statenent is not executable (i.e. a declaration).
stm.is_sel ect if a statenent is an if, if-else, or swtch.

for an "if" statenent,
for an "el se" statenent,
for a "while" statenent,
for a "do" statenent,

stm ki nd

AWNRRRPRPRRRRE

stm | abel s
stmlines

stm|local s
stm | oop_back
st m nenbers
stm need_conp

st m never _caught
stm no_break

stm no_defaul t
stmno_init

st m oper ands

st moperators
stmrelation
stmreturn_paren
stmreturn_void
st m seni col on
stmsinple
stmsw tch_cases
st m tokens

st m unused

st m unused_nane()
strcat ()
strchr()

strcemp()

strcpy()
strcspn()

strequi v()
strlen()
strncat ()

strncnp()
strncpy()
str_option()
st rpbrk()
strrchr()
strspn()
strstr()

suf fix()

t ag_abstract
t ag_anonynous

5 for a "for" statenent,

6 for a "switch" statenent,

7 for a "try" statement,

8 for a "catch" statenent,

9 for a "function" conpound statenent,
10 for a conpound statenent,

11 for an expression statenent,
12 for a break statenent,

13 for a continue statenent,

14 for a return statenent,

15 for a goto statenent,

16 for a declaration statenment,
17 for an enpty statenent.

Nurmber of ordinary |abels (not case or default |abels)

attached to this statenent.

Nurmber of lines in the current statenent,including blank
lines that precede the first token of the statement.
Nurmber of |ocal variables declared in a bl ock.

1if a goto statement junps backward.

Number of |ocal union, struct, or class nenbers declared.

1if anif, do, while for or else statenent's is not

a conpound st atemnent.

1 if an exception handler will never be reached.

1if the previous statenent is a case with no junp.

1if a switch statenent has no default case.

1if a variable is used before it has been initialized.
Note: this variable does not yet work on C++ code.

Total number of operands found in a statement.

Total nunber of C operators found in a statenent.

Nurmber of Bool ean rel ational operators in a statenent.

1 if return has a value NOT enclosed in parentheses.

1if return value conflicts with the function declaration.

1 if a suspicious semcolon is found (e.g. while(x);).

Nurmber of |ocal sinple variables declared in a bl ock.

Nunmber of cases found in the current switch statenent.

Nunber of |exical tokens found in a statenent.

Nunber of unused |ocal variables in a block. Use function
st m unused_name(k) for their names (0<=k<stm unused).

Ret urns name of the given unused variable in the bl ock.

Standard ANSI C strcat function.

Standard ANSI C strchr function.

Standard ANSI C strcnp function.

Standard ANSI C strcpy function.

Standard ANSI C strcspn function.

1if one string is the same (except for case) as another.

Standard ANSI C strlen function.

Standard ANSI C strncat function.

Standard ANSI C strncnp function.

Standard ANSI C strncpy function.

Returns string value of the specified command-1ine option.

Standard ANSI C strpbrk function.

Standard ANSI C strrchr function.
Standard ANSI C strspn function.
St andard ANSI C strstr function.

Simlar to the prefix function. See docunentation.
1 when this is a C+t+ class with a pure virtual function.
1 when an anonynous (unnaned) tag is defined.

t ag_base_access

1 when a base cl ass does not have an explicit access
specifier (public, protected, or private).

t ag_basecl ass_access()

t ag_basecl ass_ki nd()

t ag_basecl ass_nane()

t ag_bases
tag_begin

tag_cl asses

t ag_conponent s()
tag_constants
tag_constructors
tag_di stance

tag_end
tag_fcn_friends
tag_friends
tag_functions

t ag_gl obal
tag_has_assign
t ag_has_copy
tag_has_defaul t
tag_has_destr

t ag_hi dden
tag_kind

tag_lines
tag_| ocal
tag_nem access

t ag_nenbers

t ag_mut abl es

t ag_nane()

t ag_nested
tag_operators
tag_private
tag_protected
tag_public
tag_static_fcn
tag_static_nem
tag_tenplate
tag_t okens
tag_types

test _needed()

G ven the index of a base class, returns the access
specifier type(public, protected, private).

0 public base class

1 protected base cl ass

2 private base class

G ven the index of a base class, returns the kind of the
base class which has sane val ue as tag_ki nd.

G ven the index of a base class, returns the nane of

t he base cl ass.

Nurmber of C++ base classes for this tag.

1 when a tag definition begins.

Nunber of nanmed cl asses nested within this class.

See docunentati on.

Nunmber of enunerated constants defined in this class.

Nunmber of constructors declared in this class.

1 for a _near tag, (Borl and C++)

2 for a _far tag, (Borl and Ct++)

3 for a _huge tag, (Borl and Ct++)

4 for an _export tag. (Borl and C++)

1 when a tag definition ends.

Number of friend functions declared in this class.

Nunber of friend classes declared in this class.

Nunber of nenber functions declared in this class.

1if this tag has file scope.

1if this C++ class has an operator=().

1if this C++ class has a copy constructor.

1if this C++ class has a default constructor

1if this C++ class has a destructor.

1 when a local tag hides another tag.

1 for an enum

2 for a union,

3 for a struct,

4 for a class.

Nurmber of lines in the tag definition.

1if this tag has local scope (within a function).

1if the first nenber of this class does not have an

access label (public, protected, or private).

Nunmber of data nmenbers defined in this class.

Nunmber of mutable data nmenbers defined in this class.

Returns the tag nane for the current tag.

1if this tag definition is nested within another tag.

Nurmber of operator functions declared in this class.

Nurmber of identifiers declared with private access.

Nurmber of identifiers declared with protected access.

Nurmber of identifiers declared with public access.

Nunber of static nenber functions declared in this class.

Nunber of static data nmenber declared in this class.

Nurmber of tenplate paraneters.

Nurmber of tokens in this tag definition.

Nurmber of typedef names defined in this class.

Triggers if any of the specified functions is called
without a validity test imediately follow ng.

t oken() Returns current |exical token as a string.

undefi ne() Undefi nes the specified nmacro.
vari ance() Variance of a statistical variable.
war n() CGenerates a warni ng nessage.

* This variable has type statistic int.

A ossary of terns used in the above descriptions:

abstract decl arator
- Atype without a declarator nane, e.g. (char **).
aggregate type
- Array, union, struct, or class.
anonynous tag
- An enum wunion, struct, or class defined w thout a nane.
argunent of a function
- A value actually passed to a function during a call (see paraneter).
base type
- The sinple type of an identifier before any qualification. For exanple,
t he decl arati on "const double *xyz[5]" has base type "double".
bl ock
- A conpound statenent or function body.
conpound st at enent
- A Dblock of statements enclosed in curly braces.
decl ar at or
- An identifier that is being declared.
definition
- A declaration that allocates space for a variable or function, as
opposed to a declaration that nerely refers to a variable or function
directive
- A preprocessor instruction (all directives begin with #).
gl obal
- Avariable with file scope, whether or not it is static.
Hal st ead oper at or
- Any token that is not an identifier
hi gh precedence operator
- Any of these operators:
& (address of)
O (function call)
-> (poi nter dereference)
~ (bitwi se | ogical conplenent)
++ (pre- or post-increnent)
-- (pre- or post-decrenent)
* (indirection)
! (1 ogi cal negation)
. (menber sel ection)
->* (C++ menber dereference)
C* (C++ nenber sel ection)
- (unary arithmetic negative)
+ (unary arithnetic positive)
s (C++ scope)
[1 (subscript)
iteration-statenent
- Afor-, while-, or do-while-statenent.

j unp- st at enent
- A goto-, continue-, break-, or return-statenent.
| evel s of a type
- The nodifiers that are attached to a type. There are three kinds of

nodifiers in C (four in C++): "array of...", "pointer to...", "function
returning...", and (C++ only) "reference to...". For exanple, the type
"int *char[]" has two | evels because it is an array of pointers to int.
Level 0 is "array of", level 1 is "pointer to", and the base is "int".

In this exanple, dcl_base will be INT_TYPE, dcl_levels will be 2,
dcl _level (0) will be ARRAY, and dcl _level (1) will be PO NTER Each |evel
can be qualified with type qualifiers Iike const, volatile, etc. The
qualifiers for each | evel can be obtained with dcl _|evel flags().
| ocal
- Avariable with block scope, declared within a function
| ow precedence operator
- Any of these operators:
?: (condi tional)
= += -= *= [= & |= % "= (assignnments)
mani f est const ant
- A constant referred to with a synbol rather than a val ue.
medi um pr ecedence oper at or
- Any operator not listed above as | ow or high-precedence.
new i ne
- Depending on the system a newline "character" may be a carriage return
a linefeed, a return followed by a linefeed, or a linefeed foll owed by
a return. Like nost conpilers, CodeCheck accepts any of these.
parameter of a function
- The nane of a value received by a function in a call (see argunent).
ol dstyl e function
- An unprototyped function
sel ection statenent
- if-statement, if-else-statenent, or switch-statenent.
simpl e type
- atype that is NOT an array, pointer, reference, or function
statistic type
- A special CodeCheck storage class. Statistical variables remenber every
val ue ever assigned to them
tag nane
- The "tag" of an enum wunion, struct, or class is the identifier that
i mediately foll ows the keyword enum union, struct, or class.
whi t espace
- One or nore of these characters: space, tab, newine, vertical tab
formfeed, backspace. Coments within macro definitions are whitespace.

