
© Copyright 1988-2005 by Abraxas Software, Inc. All rights reserved, worldwide.

CodeCheck
Reference
Manual

by
Loren Cobb, PhD.

CodeCheck™ is a product of Abraxas Software, Inc.

For more information, contact:

Abraxas Software, Inc.
Post Office Box 19586

Portland, OR 97280, USA

Phone: 503-232-0540
Fax: 503-232-0543

Email: support@abxsoft.com
www.abraxas-software.com

CodeCheck - ii - 10/17/04

Table of Contents

INTRODUCTION..V

COMMAND-LINE OPTIONS:

1.1 OPTIONS..8

1.2 CODECHECK FILE NAMES...13

1.3 RULES CAN DEPEND ON OPTIONS..14

1.4 OPTIONS CAN TRANSMIT PARAMETERS...15

1.5 RULES CAN SET DEFAULT OPTIONS ...16

CODECHECK PROGRAMMING CONCEPTS:

2.1 CODECHECK RULES...17

2.2 RULE EVALUATION...19

2.3 RULE SYNTAX..21

2.4 CODECHECK OPERATORS ...22

2.5 CODECHECK PROGRAMS...25

2.6 PREDEFINED AND USER-DEFINED VARIABLES............................26

CODECHECK C/C++ ANALYSIS VARIABLES:

3.1 CONVERSION VARIABLES..29

3.2 DECLARATION VARIABLES...31

3.3 EXPRESSION VARIABLES...45

3.4 FUNCTION VARIABLES ...48

3.5 IDENTIFIER VARIABLES ..51

3.6 LEXICAL VARIABLES...54

3.7 LINE VARIABLES ...60

3.8 MODULE VARIABLES ...64

10/17/04 – iii – CodeCheck

3.9 OPERATOR VARIABLES...66

3.10 PREPROCESSOR VARIABLES..76

3.11 PROJECT VARIABLES..83

3.12 STATEMENT VARIABLES..86

3.13 STRUCTURE AND C++ CLASS VARIABLES...................................91

CODECHECK FUNCTIONS:

4.1 GENERAL FUNCTIONS...96

4.2 LEXICAL FUNCTIONS ..101

4.3 PREPROCESSOR FUNCTIONS...103

4.4 DECLARATOR FUNCTIONS..105

4.5 C++ CLASS FUNCTIONS...107

4.6 OPERATOR FUNCTIONS..109

4.7 CHARACTER FUNCTIONS...110

4.8 STRING FUNCTIONS...111

4.9 MATHEMATICAL FUNCTIONS..115

4.10 STATISTICAL FUNCTIONS...115

4.11 INPUT/OUTPUT FUNCTIONS ...117

WARNING MESSAGES...120

WARNINGS ISSUED BY RULES..120

ERROR WARNING FUNCTIONS...121

WARNINGS ISSUED BY CODECHECK...122

FATAL ERROR MESSAGES..131

LIMITS AND ASSUMPTIONS ..141

TROUBLE-SHOOTING TECHNIQUES..143

TROUBLE REPORT FORM...145

CodeCheck – iv – 10/17/04

INDEX ...146

10/17/04 – v – CodeCheck

Introduction
Computer professionals have a large and growing collection of tools that

aid in the program development process. Oddly, very few of these tools for pro-
grammers are themselves fully programmable. CodeCheck is a significant
addition to the genre of programmable tools. It performs its primary task—
analyzing and critiquing C and C++ source code—entirely under the direction
of a user-written control program.

CodeCheck is not a new version of that old C programmer’s standby, lint,
although it can perform some lint-like error detection. For example, Code-
Check compares all declarations and macro definitions across all modules of a
project, to detect inconsistencies.

The main thrust of CodeCheck is to detect noncompliance with codified
style standards, to detect maintenance or portability problems within code
which already compiles perfectly on today’s compilers, and to compute cus-
tomized quantitative indicators of code size, complexity, and density.

CodeCheck is a powerful tool for analyzing C and C++ source code. Stan-
dards and measures can be specified by the user for a tremendous number of
features of C code that have an impact on portability, maintainability, and
style. CodeCheck is designed to enhance dramatically the effectiveness and
efficiency of project management in commercial and industrial programming
efforts.

A custom CodeCheck program specifying code standards and measures can
be written by a project leader using the CodeCheck language (actually a re-
stricted subset of C itself). CodeCheck can be programmed to:

a. Monitor compliance with standards for programming style,
rules for type-encoded prefixes for identifiers, proper use of
macros and typedefs, prototypes, etc.

b. Identify code that is not portable to or from any particular
environment (machine, compiler, operating system, or
interface standard).

c. Quantify code maintainability with user-defined measures
at all levels: line, statement, function, file, and project.
Compute McCabe and Halstead complexity measures.

Sample CodeCheck programs are provided for a variety of problems, rang-
ing from portability to complexity and compliance analysis for corporate and
industry style standards.

10/17/04 – 7 – CodeCheck

Chapter 1: Command-line Options

CodeCheck is invoked by means of a command line with either of these for-
mats:

check -options foo.c
check foo.c -options

In this command line format foo.c refers to the name of the C source file to
be analyzed. Any number of source files may be specified, arbitrarily
intermixed with options.

The rules that are to be used to perform this analysis can be specified in the
options list, as described below. If no rule file is specified, CodeCheck will look
for a precompiled rule file named default.cco, first in the current directory and
then in the directories specified in the CCRULES environment variable. If
this file is not found, CodeCheck will perform a simple syntactic scan of the
source file without any user-defined rules.

To analyze a multiple-file project with CodeCheck, either list all of the
source filenames on the command line, or create a new file containing the
names of all of the source files, one per line (do not list header files and li-
braries in the project file). Give this project file the extension “.ccp”. The
contents after character '#' are interpreted as comments and ignored till the
end of the line. Then invoke CodeCheck, specifying the project file instead of a
source file:

check -options myproject.ccp # comments

CodeCheck will apply its rules to each source file named in myproject.ccp,
and will apply project-level checking across all the files in the project. The ccp
extension informs CodeCheck that the specified file is a project file rather than
a C source file. This extension may be omitted in the command-line.
Command-line options may also be specified in the project file, one per line.
Every option placed in a project file applies to every source file in the project.

The CodeCheck functions option(char) and set_option(char,int) can be used
to obtain and set simple and integer-valued command-line options, e.g. –B and
–N. It cannot be used to change –K, however. For those command-line options
that take string operands, e.g. –Iusr/foo/bar/headers, the equivalent functions
are str_option(char) and set_str_option(char, char *). The CodeCheck function
option() returns an integer whose value depends on the command-line options
specified by the user when CodeCheck was invoked. For example, option('X')

 10/17/04 – 8 – CodeCheck

returns the value 1 if the user specifies the option –X in the command line,
otherwise it returns 0.

A user can place either an integer or a string after the option. In both
cases, the value of the option can be obtained by calling function str_option('X'
) in rule a rule file. To use the option as an integer in a rule file, pass the value
obtained via function call to str_option to another CodeCheck function atoi().
These functions are useful for three purposes, as outlined in sections 1.3 – 1.5.

1.1 Options

Command-line options are used to override default actions or conventions,
or to indicate additional actions that you want CodeCheck to perform.
CodeCheck command-line options are not case-sensitive. The available op-
tions are:

–A Reserved for CodeCheck expansion. Please do not use.

–B Instruct CodeCheck that braces are on the same nesting level as
material surrounded by the braces. If this option is not specified, then
CodeCheck assumes that the braces are at the previous nesting level. This
option only affects the predefined variable lin_nest_level.

–C Reserved for CodeCheck expansion. Please do not use.

–D Define a macro. The name of the macro must follow immediately. An
optional macro definition can be specified after an equal sign. The macro may
not have any arguments. For example,

check –DFOREVER=for(;;)

has the same effect as starting each source code file with

#define FOREVER for(;;)

If no macro definition is given, then CodeCheck assigns the value 1 to
the macro by default.

-D? Internal macro dump [#define]. On command line –D? will dump
initial state of #define internals after –Kn initialization Dynamic dumps may
be generated with rule-file set_str_option(‘D’, “?”) function.

10/17/04 – 9 – CodeCheck

–E Do not ignore tokens that are derived from macro expansion when
performing counts, e.g. of operators and operands. The default (–E not
specified) is for CodeCheck to ignore all macro-derived tokens when counting.

–F Count tokens, lines, operators, or operands when reading header files.
The default (–F not specified) is for CodeCheck not to count tokens, lines,
operators, or operands when reading header files.

–G Do not read each header file more than once. Caution: Some header files
are designed to be read multiple times, with conditional access to different
sections of the header.

–HList all header files in the listing file. The –L option is assumed if this
option is found. If –L is found without –H, then the listing file created by
CodeCheck will not display the contents of header files.include files

–I Specify a path to search when looking for header files. Use a separate –I
for each path. The pathname must follow –I, e.g.

 check -I/usr/myheaderpath src.c

Header directory pathnames identified with the –I command-line option
are searched before any directory paths listed in the the INCLUDE
environmental variable. CodeCheck Unix only: the default header directory
path is /usr/include.

–J Suppress all CodeCheck-generated error messages, e.g. syntax
warnings. This option does not suppress warning messages generated by
rules.

–Kn Identify the dialect of C to be assumed for the source files. A digit
should follow immediately, which identifies the dialect. The dialects of C and
C++ currently available are:

0 Strict K&R (1978) C
1 Strict ANSI standard C

 2 K&R C with common extensions
 3 ANSI C with common extensions (default)

4 AT&T C++ [ANSI STD C++ - Stroustrup]
5 Symantec C++
6 Borland C++ [CodeBuilder]
7 Microsoft C++ [MSDEV C++ 6.0 or later]
8 GNU-GCC C/C++ [IBM VAC++]
9 MetroWerks CodeWarrior C/C++

10 DEC Vax C and HP/Apollo C.
11 Metaware High C

 10/17/04 – 10 – CodeCheck

If this option is not specified, then CodeCheck will assume that the
source code is ANSI with common extensions (–K3).

If option –K is specified with no digit following, then CodeCheck will
assume that the user meant strict K&R C (–K0).

–L Make a listing file for the source file or project, with CodeCheck mes-
sages interspersed at appropriate points in the listing. The name of the listing
file may follow immediately. If no name is given then the listing file will be
check.lst. The listing file will be created in the current directory, unless a
target directory is specified with the –Q option.

–M List all macro expansions in the listing file. Each line containing
a macro is listed first as it is found in the source file, and second as it appears
with all macros expanded. The –L option is assumed if –M is found. If –L is
found without –M, then the listing file created by CodeCheck will not exhibit
macro expansions.

–N Allow nested /* ... */ comments.

–NEST Allow C++ nested class definitions.

–O Append all CodeCheck stderr output to the file stderr.out. This is useful
for those using the MS-DOS operating system, which does not permit the redi-
rection of stderr output.

–P Show progress of code checking. When this option is given, CodeCheck
will identify each file in the project as it is opened, and each function definition
as it is parsed.

–Q Specify a target directory. The pathname of the directory into which all
CodeCheck output files are to be placed must follow immediately, e.g.

check -L -Q./temp mysource.c

Examples of such output files are the listing and prototype files. If this
option is omitted CodeCheck will write its output files to the current working
directory.

–R Specify a rule file. The name of the rule file must follow immediately,
e.g. if the rule file name is foobar.cc and the C or C++ source filename is
mysource.c:

check -Rfoobar mysource.c

CodeCheck first looks for a object (i.e. compiled) rule file of this name
(e.g. foobar.cco). If this file is out-of-date or not found, CodeCheck will recom-

10/17/04 – 11 – CodeCheck

pile the rule file (foobar.cc) into an object file (foobar.cco) before proceeding to
apply these rules to the source file.

More than one –R file may be specified: in this case all the rules will be
compiled together into an object file named temp.cco.

If no –R file is specified, CodeCheck first looks for an object file named
default.cco. If this file is found then it’s rules are used. If it is not found then
checking proceeds with no user-defined rules.

–Sn Apply rules while reading header files. A digit should follow
immediately, which identifies the kinds of header files:

0 No header files (default).
1 Headers enclosed in double quotes.
2 Headers enclosed in angle brackets.
3 All header files.

For example, suppose that these two lines are in a source file:

#include <ctypes.h> // A standard system header
#include "project.h" // An application header

When option –S1 is in effect, CodeCheck will
apply it’s rules to project.h but not ctypes.h. Please note that CodeCheck must
always read every header included in a source file — this option only
determines whether or not CodeCheck rules will be applied to the contents of
the various headers.

CodeCheck’s default behavior is not to apply its rules to the contents of
any included header files.

The environmental variable CCEXCLUDE, if it is used, takes prece-
dence over this option. Rules are never applied to files that are found in
directories listed in this variable.

–SQL Enables embedded SQL code. Note: this option must be spelled in
all uppercase.

–T Create a file of prototypes for all functions defined in a project. The
name of the prototype file may follow immediately. If no name is given then
the name for the prototype file will be myprotos.h. The prototye file will be
created in the current directory, unless a target directory is specified with the
–Q option.

 10/17/04 – 12 – CodeCheck

–U Undefine a macro constant. The name of the macro must follow im-
mediately. Thus check -UMSDOS foo.c has the effect of treating foo.c as
though it began with the preprocessor directive #undef MSDOS.

–V For CodeCheck users. See Section 1.4 for usage suggestions.

–W For CodeCheck users. See Section 1.4 for usage suggestions.

–X For CodeCheck users. See Section 1.4 for usage suggestions.

–Y For CodeCheck users. See Section 1.4 for usage suggestions.

–Z Suppress cross-module checking. Macro definitions and variable and
function declarations will not be checked for consistency across the modules of
a project. Often required in .CCP files when checking several source files at
once.

Any letter of the alphabet may be used as a command-line option. Every
option is remembered by CodeCheck and passed to the rule interpreter. Code-
Check rules can refer to and change these options by calling the functions
option, set_option, str_option, and set_str_option (see Section 1.3–1.5 for de-
tails). Option –X is recommended for users who wish to design custom rule files
whose behavior is controlled by a command-line option.

Batch processing [@file] of large command strings is done with CodeCheck
.ccp files. See below CodeCheck File Names.

1.2 CodeCheck File Names

The conventions used by CodeCheck for filename extensions are:

.cc A CodeCheck rule file, containing a set of rules for compilation by
CodeCheck. These rules are written in a subset of the C language.
CodeCheck requires that this extension be used for rule filenames,
though it may be omitted in the –R command-line option.

.cch A CodeCheck header file, for inclusion in a CodeCheck rule file.

.cco A CodeCheck object file, produced by the CodeCheck compiler. This
file contains a compilation of the rules found in the rule file with the
same name but extension ccp.

.ccp A project file for CodeCheck. This file contains a simple list of the file-
names of all of the source modules that comprise a project, one

10/17/04 – 13 – CodeCheck

filename per line. Header files and libraries should not be listed in this
file. Any CodeCheck options may be listed in a ccp file, so long as each
option is delimited by CR-LF. There is no limit to the number of ccp
files on the command line.

Depending on command line options, the following files may be created by
CodeCheck:

check.lst The default filename for the listing file (–L option).

myprotos.h The default filename for the prototype file (–T option).

stderr.out The filename for stderr output (–O option).

temp.cco The name of the object file created by CodeCheck when
more than one rule file is compiled (several –R options).

1.3 Rules can Depend on Options

The CodeCheck function option() allows rules to behave differently de-
pending on the options chosen by the user. For example, by testing the value
of option('L') the rule can distinguish between users who have asked for a list-
ing file and those who have not. Here is an example which issues different
warnings depending on whether the user has requested a list file.

1 if (dcl_any_upper)
2 {
3 if (option('L')) // This is for the list file:
4 warn(99, “Spell this name in lower case!”);
5 else // This is for the console:
6 warn(99, “Identifier %s should be lower case.”, dcl_name());
7 }

The message for the list file (“Spell this name…”) is appropriate because it
will appear in context, directly below the offending line, with a marker under
the identifier in question. The other message is more appropriate for the con-
sole, because it will be seen out of context.

Sometimes it is desirable for a CodeCheck rule actually to change one of its
given options. The following rule, for example, will allow CodeCheck to decide
that nested comments are okay as soon as it finds a nested /*.

 10/17/04 – 14 – CodeCheck

1 if (lin_nested_comment)
2 {
3 if (! option('N'))
4 set_option('N', 1);
5 warn(1234, “Nested comment.”);
6 }

1.4 Options can Transmit Parameters

The CodeCheck functions option() and str_option() allow the user to
transmit numeric and string information to CodeCheck rules. All CodeCheck
command-line options can be determined within CodeCheck rules. For ex-
ample, if the user invokes CodeCheck with the command line:

check -V2 –Rerror test.c

then the function call str_option('R') will return the string "error", and
option('V') will return the value 2. The former could be used to print messages
that refer to the name of the rule file, and the latter could be used in a
CodeCheck rule to define a “verbosity” level, for example:

1 if (stm_depth > 6)
2 switch(option('V'))
3 {
4 case 0: /* one-line message */
5 break;
6 case 1: /* two-line message */
7 break:
8 case 2: /* extended message */
9 break;
10 }

The command-line options –V, –W, –X, –Y are guaranteed always to be
available to users for any purpose. All other options have meanings pre-as-
signed by Abraxas Software, or are reserved for future use.

1.5 Rules can Set Default Options

Command-line options do not have to be specified in the command line
itself. For example, the following rule sets up one programmer’s normal op-
tions, so that he does not need to type them in his command line:

10/17/04 – 15 – CodeCheck

1 if (prj_begin)
2 {
3 set_option('M',1); // Expand macros in listing file.
4 set_option('B',1); // Braces are part of compound statements.
5 set_option('E',1); // Count macro-derived tokens too.
6
7 set_str_option('I', "C:\C600\INCLUDE");
8 set_str_option('I', "C:\RUN286\INCLUDE");
9 }

Defaults cannot be set on options –K and –R.

 10/17/04 – 16 – CodeCheck

Chapter 2: CodeCheck
Programming Concepts

2.1 CodeCheck Rules

A CodeCheck rule is a C if-statement, written using a restricted subset of
the C grammar. The logical expressions that compose a rule refer to variables
that are either declared in the CodeCheck program or are predefined by Code-
Check. Here is an example of two simple CodeCheck rules:

1 if (pp_white_before > 0)
2 warn(2090, "Space before # is not portable.");
3
4 if (pp_trailer)
5 warn(2091, "Trailing tokens are not portable.");

The first rule uses the predefined variable pp_white_before, which becomes
non-zero whenever a # character is found that is separated from a newline
character by whitespace (i.e. space or tab characters). The CodeCheck function
warn() echoes its arguments (an error number and a string) to the stderr
stream, with an indication of the filename and line number at which the error
was found. The warnings look like this:

test.c(124): warning W2090: Space before # is not portable.
test.c(126): warning W2090: Space before # is not portable.
test.c(127): warning W2091: Trailing tokens are not portable.

If a listing file is being made (option –L), then CodeCheck will also insert
the warning message into the listing file after the offending line, with a letter
(A, B, C, …) under the position of the error. The first error message for the line
refers to the position marked with the letter A; the second is marked with the
letter B; etc. The listing file will look like this:

 123 #ifdef BSD
 124 #include <sys/dir.h>
------> A
A: warning W2090: Space before # is not portable.

 125 #else
 - #include <dirent.h>
------> A
A: warning W2090: Space before # is not portable.

10/17/04 – 17 – CodeCheck

 127 #endif BSD
------> A
A: warning W2091: Trailing tokens are not portable.

Note that line 126 has no line number: this indicates that it was suppressed.

 10/17/04 – 18 – CodeCheck

2.2 Rule Evaluation

The CodeCheck interpreter will evaluate a rule as often as necessary to as-
sure its correct operation. Thus, rules which refer to low-level lexical variables
will be evaluated most often during the code-checking process, while high-level
rules will be evaluated least often. The order in which CodeCheck rules are
found in a source rule file does not affect the order in which they are inter-
preted by CodeCheck.

A CodeCheck rule is triggered whenever its “if” condition is satisfied. Since
CodeCheck rules can perform arithmetic and assign values to variables, it is
quite possible for a CodeCheck rule to trigger other CodeCheck rules. This
triggering happens immediately: as soon as the value of a user-declared
CodeCheck variable changes, all other rules using this variable are triggered.
Thus CodeCheck operates like a forward-chaining expert system, even though
its rules are written in a procedural language.

It may be instructive to review the various ways in which CodeCheck both
resembles and differs from a true expert system. For a program to be an expert
system in the strict sense of the term, it must, as a minimum, have these three
features:

1. A set of “rules”, external to the program itself, expressed in either
of these two forms:

1a. if circumstances then actions

1b. if circumstances then conclusions

2. A set of “facts” representing the current state of knowledge of the
system.

3. A rule interpreter with the ability to use rules in more than one
way. The three most common uses for rules are the following:

3a. To repeatedly recognize circumstances and perform ac-
tions or assert conclusions until nothing further can be
done. (This kind of logical inference is known as “forward
chaining”).

3b. To verify conclusions by recursively testing circum-
stances. (This is known as “backward chaining”).

10/17/04 – 19 – CodeCheck

3c. To explain actions or conclusions by reference to the
applicable chain of rules.

CodeCheck satisfies conditions (1) and (2), in that it has an external set of
rules and facts of the required form. (CodeCheck “facts” are the values of its
user- and pre-defined variables.) It also has a rule interpreter which recog-
nizes circumstances and performs actions. However, CodeCheck uses rules in
only one way — forward chaining.

Much of the power of expert systems derives from their flexible use of exter-
nal bodies of facts and rules. These so-called “rule bases” encode the knowledge
used by the expert system in a form that is (in the ideal case) understandable
and maintainable by non-programmers. CodeCheck makes use of this signifi-
cant source of structural power, but in a purely procedural way. It is thus a
hybrid between a procedural interpreter and a logical expert system.

 10/17/04 – 20 – CodeCheck

2.3 Rule Syntax

The syntax of a CodeCheck rule is almost the same as the syntax of an if-
statement in C:

1 if (expression)
2 statement

The expression in the rule condition is called the “trigger” for the rule, be-
cause it defines the event in which the rule is to be evaluated. The statement
in the rule may be a compound statement surrounded by braces, just as in C.
The only difference between a C if-statement and a CodeCheck rule is this: a
rule can have no else statement. The reason for this is easy to see — the else
statement, if it existed, would have to be evaluated whenever the trigger is not
being triggered, an ill-defined event.

However, the statement in a rule may certainly contain if-statements, and
these may have else statements. This syntax has the following format:

1 if (trigger)
2 {
3 if (expression)
4 statement1
5 else
6 statement2
7 }

There is no ill-defined event in this context, because the event causing the
evaluation of the rule has been unambiguously defined by the trigger.

There are no local variables in CodeCheck — all variables are global, no
matter where they are declared. Every user-defined CodeCheck variable must
be declared before it is used.

The only kinds of control-flow statement permitted inside a CodeCheck rule
are if, while, and switch statements. Break and continue are permitted.

The following are not permitted:

for do goto return

10/17/04 – 21 – CodeCheck

2.4 CodeCheck Operators

The C operators that are valid in CodeCheck expressions are the following:

() function call

[] subscript selection

++ pre- and post-increment

-- pre- and post-decrement

+ unary and binary plus

- unary and binary minus

* multiply

/ divide

% remainder

<< left shift

>> right shift

= assign

+= add and assign

-= subtract and assign

*= multiply and assign

/= divide and assign

%= remainder and assign

! logical negation

== logical comparison (equality)

< logical comparison (less)

> logical comparison (greater)

 10/17/04 – 22 – CodeCheck

<= logical comparison (=)

>= logical comparison (=)

!= logical comparison (?)

&& logical conjunction

|| logical disjunction

 ~ bitwise complement

& bitwise AND

| bitwise OR

& address-of operator

The C operators that are NOT VALID in CodeCheck expressions are:

. struct and union member selection

-> pointer dereference

* indirection operator

sizeof size operator

<<= left shift and assign

>>= right shift and assign

^ bitwise XOR

&= bitwise AND and assign

|= bitwise OR and assign

^= bitwise XOR and assign

? : conditional operator

 , comma operator

:: C++ scope operator

.* C++ object member selector

–>* C++ object member pointer

10/17/04 – 23 – CodeCheck

2.5 CodeCheck Programs

A CodeCheck program is a collection of CodeCheck rules, optionally includ-
ing declarations for user-defined variables. The C preprocessor is available
within CodeCheck programs, and normal C comments can be placed
anywhere. C++ single-line comments (delimited on the left by //) are also
supported.

Here, in its entirety, is an example of a CodeCheck program that calculates
the density of operators per line of C code. This rule set makes use of four
predefined CodeCheck variables: fcn_begin and fcn_end, which flag the be-
ginning and end of C functions, lin_operators, which counts the number of
operators in each line of code, and fcn_total_lines, which counts the number of
lines in each C function.

 1 float ops, /* number of operators */
 2 density; /* operators per line */
 3
 4 if (fcn_begin)
 5 ops = 0.0;
 6
 7 if (lin_end)
 8 ops += lin_operators;
 9
10 if (fcn_end)
11 {
12 density = ops / fcn_total_lines;
13 printf("Function %s:\n", fcn_name());
14 printf(" operator density = %g\n", density);
15 }

As CodeCheck scans a C source file, it interprets these rules in the follow-
ing order. Every time a function definition is found, the rule on lines 4-5 is
executed. Every time an end-of-line is found, the rule on lines 7-8 is executed.
And lastly, every time the end of a function is found, the rule on lines 10-15 is
executed. By this mechanism the variable ops accumulates the operator count
until the end of the function, and is reset to zero at the start of the next func-
tion.

 10/17/04 – 24 – CodeCheck

2.6 Predefined and User-defined Variables

There are well over 400 predefined CodeCheck variables which flag the oc-
currence of stylistic features and potential portability or maintenance prob-
lems. These variables describe features that range from the lowest level of lex-
ical analysis all the way up to features of the project as a whole. A detailed de-
scription of each predefined CodeCheck variable may be found in Chapter 6.
In addition to the predefined variables, the user can declare and use both in-
teger and floating-point variables within any rule set.

2.6.1 All CodeCheck Variables are Global

Unlike C automatic and static variables, no CodeCheck variable is defined
locally. All CodeCheck declarations are treated as though they were of storage
class extern, i.e. global. At the beginning of every CodeCheck rule file there
must be a declaration for every user-defined variable that is referred to in the
file. Unlike C, you may not declare local variables within compound state-
ments in CodeCheck.

2.6.2 Only Simple Types are Allowed

The only base types allowed for user-defined variables in this version of
CodeCheck are int, float, and char. Structs, unions, arrays, pointers, and
functions are not allowed. Strings (i.e. zero-terminated character arrays) are
allowed only as the return values of CodeCheck functions, and as string
literals (e.g. "this is a string literal"). A CodeCheck declaration may include an
initializer, exactly as in C, but the initializer must be a constant, not an
expression. Variables without explicit initializers are initialized to zero.

On 80x86 and 680x0 platforms, the size of a CodeCheck int is 32 bits, as is
the size of a CodeCheck float. For other platforms consult the README file.
The CodeCheck char type is signed.

Note: Currently, one-dimensional char arrays are allowed. When such kind
of variable is declared, the dimension of the array must be specified. A pointer
to char type is also allowed. Therefore a pointer of such kind can be used as
index to a string.

10/17/04 – 25 – CodeCheck

2.6.3 CodeCheck Variables are Frequently Reset to Zero

It is very important to understand when CodeCheck predefined variables
are re-reset to 0. Each predefined variable is set to 0 at the start of execution,
and then again at the end of the scan of every grammatical object to which it
refers. Consider, for example, the variable dcl_union_init, which is given the
value 1 whenever a union initializer is found. This variable refers to
declarations (as indicated by its prefix dcl_), and is therefore reset to 0 at the
end of every declaration. Thus, its value is 0 until an initializer for a union is
found, whereupon it is set to 1. It retains this value until the end of the
declaration, at which time it is reset to 0.

The act of re-initializing a predefined CodeCheck variable does not cause
any rules to be triggered. The CodeCheck interpreter refers to its rules only
when the value of a CodeCheck variable is changed as a result of an explicit
event. In the case of predefined variables, this event is the one described in the
definition of the variable (definitions for all predefined variables are given in
Chapter 6). In the case of a user-defined variable, the event is any
circumstance in which its value is changed as a result of the interpretation of a
rule.

2.6.4 CodeCheck has a Storage Class for Statistical Variables

 The special statistic storage class is defined in CodeCheck for variables
that are used for measurement purposes. This storage class is designed to sim-
plify and optimize the calculation of statistical values (e.g. means, medians,
quartiles, histograms, etc.) for software metrics. No other storage classes are
permitted in CodeCheck.

A variable in the statistic storage class receives special treatment from
CodeCheck. The major difference is that every value ever assigned to the
statistic is remembered, so that statistical functions of these variables (e.g.
mean, correlation) can be readily computed. Values of statistical variables are
stored in the heap, and are freed with the CodeCheck reset() function.

Some CodeCheck predefined variables are of type statistic int. As a general
rule, these are the CodeCheck variables that count features of functions and
modules. For example, at the end of every function definition scanned by
CodeCheck, the predefined variable fcn_operators is set to the number of stan-
dard C operators found in the line of code before macro expansion. Variables of
storage class statistic have these properties:

 10/17/04 – 26 – CodeCheck

1. Every value assigned to a statistical variable is treated as a sepa-
rate observation or case. CodeCheck stores every case of every
statistical variable that is used in a rule file.

2. The “rvalue” of a statistical variable is its most-recently assigned
value. (An rvalue of a variable is the value used when the vari-
able appears on the right-hand side of an assignment.)

3. CodeCheck statistical functions can be applied to statistical vari-
ables, e.g. mean(), median(), and histogram().

4. A statistical variable can be reset (all of its cases erased) with the
CodeCheck reset() function.

5. The increment and decrement operators (++ and --) may not be
used on statistical variables.

6. User-defined statistical variables may be statistic float or statistic
int. They cannot be any other type.

10/17/04 – 27 – CodeCheck

Chapter 3: CodeCheck C/C++
Analysis Variables

3.1 Conversion Variables

All predefined CodeCheck variables that have the prefix cnv_ refer to
characteristics of the implicit type conversions that frequently occur as
executable operators are evaluated. Every CodeCheck conversion variable is
initialized to zero at the start of execution, and again at the end of the scan of
the operands of every executable operator.

cnv_any_to_bitfield Set to 1 when an expression requires an implicit
conversion from any type to a bitfield.

cnv_any_to_ptr Set to 1 when an expression requires an implicit
conversion from any non-pointer type to a pointer
type.

cnv_bitfield_to_any Set to 1 when an expression requires an implicit
conversion from a bitfield to any type.

cnv_const_to_any Set to 1 when an expression requires an implicit
conversion from a constant type to any non-constant
type.

cnv_float_to_int Set to 1 when an expression requires an implicit
conversion from a floating-point type to an integer
type.

cnv_int_to_float Set to 1 when an expression requires an implicit
conversion from an integer type to a floating-point
type.

cnv_ptr_to_any Set to 1 when an expression requires an implicit
conversion from a pointer type to any non-pointer
type.

 10/17/04 – 28 – CodeCheck

cnv_ptr_to_ptr Set to 1 when an expression requires an implicit
conversion from a pointer type to a different pointer
type.

cnv_signed_to_any Set to 1 when an expression requires an implicit
conversion from a signed type to any unsigned type.

cnv_truncate Set to 1 when an expression requires an implicit
conversion from a larger arithmetic type to a
smaller arithmetic type.

10/17/04 – 29 – CodeCheck

3.2 Declaration Variables

All predefined CodeCheck variables that have the prefix dcl_ refer to
characteristics of declarators. Every CodeCheck declaration variable is initial-
ized to zero at the start of execution, and again at the end of the scan of
every declarator. If the declarator has an initializer, then reinitialization
occurs at the end of the scan of the initializer.

A declarator declares the name, type, and initial value of a single variable
or function (there can be more than one declarator in a declaration). For exam-
ple, the following declaration has four declarators, of which two are functions
and one has an initializer:

long eeny, meeny = 1, miny(), moe();

The end of a declarator is marked by a comma or semicolon. CodeCheck evalu-
ates declarators recursively, so that variables that refer to declarators that
contain declarators are correctly set.

dcl_3dots Set to 1 whenever an ellipsis (...) is found.

dcl_abstract Set to 1 when an abstract declarator is found (e.g.
the type name in a cast operator).

dcl_access Set to 1 for C++ protected members, and set to 2 for
C++ private members. (Note: this variable remains
zero for public members, and therefore cannot act as
a trigger for these members.)

dcl_aggr Set to 1 whenever an array, union, struct, or class is
declared.

dcl_all_upper Set to 1 if only uppercase letters are found in an
identifier name when it is declared.

dcl_ambig If the current declarator name matches the name of
another visible identifier on the first 6 or more
characters, then this variable is set to the number of
matching characters (see also dcl_extern_ambig).

dcl_any_upper Set to 1 if an uppercase letter is found anywhere in
an identifier name when it is declared.

 10/17/04 – 30 – CodeCheck

dcl_array_size Set to the number of elements in an array whenever
an array declarator is found. If no size is given, then
this variable is set to –1. If the array is multidimen-
sional, then this variable is set to the total size.

dcl_auto_init Set to 1 if an initializer for an automatic array,
struct, or union is found.

dcl_base Set to an integer which identifies the base type of
the current declarator. The base types are defined
as manifest constants in the CodeCheck standard
header file check.cch. These constants are:

#define VOID_TYPE 1

#define BOOL_TYPE 2

#define CHAR_TYPE 3

#define SHORT_TYPE 4

#define WCHAR_TYPE 5

#define INT_TYPE 6

#define LONG_TYPE 7

#define LONG_LONG_TYPE 8 (***)

#define EXTRA_INT_TYPE 9 (*)

#define UCHAR_TYPE 10

#define USHORT_TYPE 11

#define UINT_TYPE 12

#define ULONG_TYPE 13

#define EXTRA_UINT_TYPE 14 (*)

#define FLOAT_TYPE 15

#define SHORT_DOUBLE_TYPE 16 (***)

#define DOUBLE_TYPE 17

#define LONG_DOUBLE_TYPE 18

#define INT8_TYPE 19 (****)

#define INT16_TYPE 20 (****)

10/17/04 – 31 – CodeCheck

#define INT32_TYPE 21 (****)

#define INT64_TYPE 22 (****)

#define EXTRA_FLOAT_TYPE 23 (***)

#define ENUM_TYPE 24

#define UNION_TYPE 25

#define STRUCT_TYPE 26

#define CLASS_TYPE 27

#define DEFINED_TYPE 28 (**)

#define EXTRA_PTR_TYPE 29 (*)

#define CONSTRUCTOR_TYPE 30

#define DESTRUCTOR_TYPE 31

(*) Note 1: These are user-definable extensions to the C/C++ set of
fundamental types. Use the function new_type() to introduce these types to
CodeCheck.

(**) Note 2: DEFINED_TYPE is used when the base type is a typedef
name. Use the CodeCheck function dcl_name() to obtain its name.

(***) Note 3: The unusual base types “long long” and “short double”
are recognized as distinct types by CodeCheck. The type “long float” is
considered to be equivalent to “double”.

(****) Note 4: Types __int8, __int16, __int32 and __int64
are extended integral types in Microsoft Visual C++, Borland C++ etc.

dcl_base_root Type from which the type of dcl_base is derived
from. If the type of dcl_base is not a user-defined
type, dcl_base_root has same value as dcl_base. For
values. See check.cch.

dcl_base_name() The base type of the current declarator, as a string.

dcl_base_name_root() The name of type from which type of dcl_base_name
is derived. If the type of dcl_base_name is not a
user-defined type, dcl_base_name_root() returns the
same value as dcl_base_name().

dcl_bitfield Set to 1 if a bitfield is found.

 10/17/04 – 32 – CodeCheck

dcl_bitfield_anon Set to 1 if an unnamed bitfield is found.

dcl_bitfield_arith Set to 1 if a bitfield width requires calculation.

dcl_bitfield_size Set to number of bits in a bitfield.

dcl_conflict Set to 1 when an identifier was declared differently
elsewhere. Use conflict_file() and conflict_line for
location.

dcl_count Set to the index of the current declarator within a
comma-delimited declaration list. The first declara-
tor has index 1, the second 2, etc, until the semicolon
is found that marks the end of the list.

dcl_cv_modifier Set to 1 if the keyword const is used as a non-ANSI
type modifier (similar to near, far, etc.) rather than
as an ANSI type specifier. Set to 2 if the keyword
volatile is used as a non-ANSI type modifier.

dcl_definition Set to 1 if a declaration is a definition, not a refer-
ence. Defining declarations reserve memory space,
referencing declarations do not.

dcl_empty Set to 1 if an empty declaration is found.

dcl_enum Set to 1 when an enumerated constant is defined.

dcl_enum_hidden Set to 1 when a declarator name hides an enumer-
ated constant.

dcl_exception C++ exception declaration complete.

dcl_explicit Set to1 when a declarator has specifier "explicit".

dcl_extern Set to 1 if the extern storage class is explicitly used
in a declaration.

dcl_extern_ambig If two external identifiers have names that agree on
the first 6 or more characters, regardless of case,
then this variable is set to the number of
consecutive characters on which they agree.

dcl_first_upper Set to the number of initial uppercase letters in an
identifier when it is declared.

dcl_friend Set to 1 if this is a friend declaration.

10/17/04 – 33 – CodeCheck

dcl_from_macro Set to 1 if the declarator name is derived from the
expansion of a macro.

dcl_function Set to 1 if this is a function declaration.

dcl_function_flags If the current declarator is a function or a pointer to
a function, then this variable is set to an integer
which identifies the special characteristics of the
function. These function characteristics are defined
as manifest constants in the CodeCheck header file
check.cch. These constants are:

#define INLINE_FCN 1
#define VIRTUAL_FCN 2
#define PURE_FCN 4
#define PASCAL_FCN 8
#define CDECL_FCN 16
#define INTERRUPT_FCN 32
#define LOADDS_FCN 64
#define SAVEREGS_FCN 128
#define FASTCALL_FCN 256
#define EXPORT_FCN 512
#define EXPLICIT_FCN 1024

dcl_function_ptr Set to 1 if this declaration is a pointer to a function .

dcl_global Set to 1 if an identifier with external linkage has
been declared. This includes variable, function, and
typedef names.

dcl_hidden Set to 1 if an inner-block declaration hides an outer.

dcl_Hungarian Set to 1 if the Hungarian style is detected (a capital
letter is immediately preceded by a lowercase letter).

dcl_ident_length Set to the number of characters in the declared iden-
tifier.

dcl_init_arith Set to 1 when a computed initializer is found, or
when a computed explicit value for an enumerated
constant is found.

dcl_initializer Set to 1 when an initializer is found.

dcl_inline Set to 1 when an inline function is declared.

dcl_label_overload Set to 1 if an inner-block declarator name matches a
label within the same function.

 10/17/04 – 34 – CodeCheck

dcl_levels Set to the number of levels in the current declarator.
Each of these counts as a level: pointer to…, array
of…, function returning…, or (C++ only) reference
to… For simple variables the value of dcl_levels is
zero.

dcl_local Set to 1 if a local identifier has been declared. This
includes local variables, function parameters, type-
def names, tag names, and enumerated constants. It
does not include labels.

dcl_local_dup Signal if a symbol is used more than once at current local scope.
The Gnu-Compiler allows this declaration, but warns "shadowed
variable”. The value returned by dcl_local_dup was the line
number last of the previous declaration.

dcl_long_float Set to 1 if a variable or function is declared long
float.

dcl_member Set respectively to 1, 2, or 3 when a member of a
union, struct, or class is declared. In C++ this in-
cludes data members, functions, typedef names,
nested tag names, and enumerated constants.

dcl_mutable Set to 1 when an indentifier is declared 'mutable'.

dcl_need_3dots Set to 1 when an ellipsis (...) is needed in a function
parameter list, but is not found.

dcl_new_array Set to 1 when a nonstandard C++ array allocator
“operator new[]” is declared.

dcl_no_specifier Set to 1 if a variable or function declarator has no
explicit type information. This variable is not
triggered by C++ constructors and destructors.

dcl_no_prototype Set to 1 if a function definition is found with no prior
function prototype in scope. This variable is set even
if this function definition is in prototype form.

dcl_not_declared Set to 1 if an old-style function parameter is not de-
clared. That is, the parameter is listed in the param-
eter list, but not declared in a formal declaration.

dcl_oldstyle Set to 1 if an old-style (i.e. not prototyped) function is
declared.

10/17/04 – 35 – CodeCheck

dcl_parameter Set to the index of a function parameter when one is
found (1 for the first parameter, 2 for the second,
etc.).

dcl_parm_count Set to the number of formal parameters found in a
function declaration.

dcl_parm_hidden Set to 1 if a function parameter has the same name
as an identifier declared within the function’s com-
pound statement.

dcl_pure Set to 1 if a pure member function is found.

dcl_simple Set to 1 when a simple variable (i.e. neither pointer,
array, reference, nor function) is declared.

dcl_signed Set to 1 if the signed type specifier is explicitly used
in a declaration.

dcl_static Set to 1 when a non-local static identifier has been
declared.

dcl_storage_first Set to 1 when a storage class specifier is preceded by
a type specifier (e.g. short static xyz).

dcl_storage_flags Set to an integer which identifies all of the storage
class specifiers for the current declaration list. The
specifier flags are defined as manifest constants in
the CodeCheck header file check.cch. These con-
stants are:

#define EXTERN_SC 1
#define STATIC_SC 2
#define TYPEDEF_SC 4
#define AUTO_SC 8
#define REGISTER_SC 16
#define MUTABLE_SC 32
#define GLOBAL_SC 64 (*)

(*) Note: Found only in the Vax C dialect.

dcl_tag_def Set to 1 when a new tag (enum, union, struct, or class) is
defined as part of a type specifier. Set to 2 if the tag is anonymous (i.e. has no
tag name).

dcl_template Set to the number of C++ template parameters if this is a
function template.

 10/17/04 – 36 – CodeCheck

dcl_throw_parameter A C++ throw argument. Created to support java-style exception
checking.

dcl_type_before Set to 1 when the return type of a function definition is on
the line before the line with the name of the function.

dcl_typedef Set to 1 if a typedef name has been declared. The name
itself can be obtained by calling the CodeCheck function dcl_name().

dcl_typedef_dup Set to 1 whenever a duplicate type definition is
found.

dcl_underscore Set to the number of leading underscores in the declarator
name.

dcl_union_bits Set to 1 if a bitfield is declared as a member of a union.

dcl_union_init Set to 1 when a union initializer is found.

dcl_unsigned Set to 1 when the type specifier unsigned is used in a
declaration.

dcl_variable Set to 1 if a variable is declared.

dcl_virtual Set to 1 if a virtual member function is declared.

dcl_zero_array Set to 1 whenever an array declarator is found that speci-
fies a dimension of zero.

Associated CodeCheck variables:

conflict_line When dcl_conflict is triggered (when a declaration conflicts
with an earlier declaration), this variable is set to the line number for the
earlier declaration. The file name is returned by the CodeCheck function
conflict_file().

Associated CodeCheck functions:

char * conflict_file(void)

When dcl_conflict is triggered (when a declaration conflicts with an earlier
declaration), this function returns the name of the file for the earlier
declaration. The line number is given by the variable. (See also conflict_line.)

10/17/04 – 37 – CodeCheck

char * dcl_array_dim(int k)

If the kth level of type for this declarator is an array, then this function
returns the array dimension (or –1 if no dimension was given).

char * dcl_base_name(void)

This function returns the name of the base type of the current declarator. If
the base type is a typedef name then the typedef name is returned. If the base
type is an enum, union, struct, or class, then the tag name is returned.

int dcl_level(int level)

Set to an integer which identifies the kind of the specified level (function re-
turning…, reference to…, pointer to…, or array of…) for the current declarator.
The number of levels for the current declarator is given by dcl_levels, which is
zero for simple variables. The kinds are defined as manifest constants in the
CodeCheck header file check.cch. These constants are:

#define SIMPLE 0
#define FUNCTION 1
#define REFERENCE 2
#define POINTER 3
#define ARRAY 4

int dcl_level_flags(int level)

Set to an integer which identifies all of the type qualifiers (e.g. const) of the
specified level (pointer to…, array of…, function returning…, or reference to…)
of the current declarator. The number of levels for the current declarator is
given by dcl_levels, which is zero for simple variables. The last level always
refers to the base type of the declarator. The level flags are defined as manifest
constants in the CodeCheck header file check.cch. These constants are:

#define CONST_FLAG 1 // ANSI
#define VOLATILE_FLAG 2 // ANSI
#define NEAR_FLAG 4 // DOS
#define FAR_FLAG 8 // DOS
#define HUGE_FLAG 16 // DOS
#define EXPORT_FLAG 32 // Windows
#define BASED_FLAG 64 // Microsoft
#define SEGMENT_FLAG 128 // Microsoft

 10/17/04 – 38 – CodeCheck

Here is an example of how dcl_level() and dcl_level_flags() work: suppose
that a function foo is declared as

float far * const near * foo(int) const;

In plain English, foo is a constant function of an integer returning a near
pointer to a constant far pointer to a float. For the declarator foo dcl_levels will
be set to 3. These levels are:

Level 0: constant function returning…
Level 1: near pointer to…
Level 2: constant far pointer to…
Level 3: float.

The flags for each level are returned by dcl_level_flags(k), where k runs
through 0 … dcl_levels. In this example the values returned by this function
are:

Level 0: CONST_FLAG
Level 1: NEAR_FLAG
Level 2: CONST_FLAG + FAR_FLAG
Level 3: 0

char * dcl_name(void)

If CodeCheck is scanning a declarator, then this function returns the name
of the current declarator, otherwise 0.

char * dcl_scope_name(void)

This function returns the class scope name right before the declarator. If
the declarator is not scoped, the function returns 0.

int prefix(char * str)

This function returns 1 if the current declarator name or tag name begins
the letters in str, otherwise 0. Each subsequent call to prefix within the
same rule will start looking for the specified string at the character position
immediately following the last successfully recognized prefix. Thus prefix can
be used to parse sequences of prefixes.

10/17/04 – 39 – CodeCheck

char * root(void)

Returns the root of an identifier after application of functions prefix and/or
suffix. For example, after calling prefix("foo_") on the identifier foo_bar, the
function root() will return the string "bar".

int suffix(char * str)

This function returns 1 if the current declarator name or tag name ends
the letters in str, otherwise 0. Each subsequent call to suffix within the same
rule will start looking for the specified suffix at a position that precedes the
last successfully recognized suffix. Thus suffix can be used to parse sequences
of suffixes.

void new_type(char * name, int type)

This function informs CodeCheck of the existence of a nonstandard built-in
keyword for a base type that is not defined in any header file. The first argu-
ment for new_type() should be the new keyword itself, in quotes. The second
argument should be any of the possible values of dcl_base (which are defined
as manifest constants in the standard CodeCheck header check.cch) except
DEFINED_TYPE. If the value is one of the following:

#define EXTRA_INT_TYPE 6 // e.g. Macintosh comp type
#define EXTRA_UINT_TYPE 11
#define EXTRA_FLOAT_TYPE 15 // e.g. Macintosh extended type
#define EXTRA_PTR_TYPE 21 // e.g. Microsoft _segment type

then CodeCheck will treat the new keyword as a new unique base type. If it is
any other value then the keyword will be considered a synonym for the
specified C type. Consult check.cch for the complete list of base types.

For example, let us suppose that a compiler has two base type keywords
that are not part of standard C, namely long64, which stands for a 64-bit
integer, and float80, which stands for an 80-bit floating-point type. This rule
could be inserted into every CodeCheck rule file to handle these keywords:

1 if (prj_begin)
2 {
3 new_type("long64", EXTRA_INT_TYPE);
4 new_type("float80", LONG_DOUBLE_TYPE);
5 }

In this example long64 has been introduced as an integer base type, not
equivalent to any other integer base type, while float80 has been introduced
as a simple synonym for the standard C base type long double.

 10/17/04 – 40 – CodeCheck

On Macintosh systems, CodeCheck understands the base types extended
and comp to correspond to LONG_DOUBLE_TYPE and EXTRA_INT_TYPE,
respectively. These Macintosh keywords do not have to be defined by the Code-
Check user.

On DOS systems, CodeCheck understands the Microsoft _segment keyword
to refer to the EXTRA_PTR_TYPE base type. Note: the Microsoft _segment
keyword is not the same as the Borland _seg keyword. The former is a base
type, while the latter is a type modifier for pointers.

10/17/04 – 41 – CodeCheck

3.3 Expression Variables

All predefined CodeCheck variables that have the prefix exp_ refer to
characteristics of C expressions. Unless otherwise noted, every expression
variable is initialized to zero at the start of execution, and again at the end
of the scan of every statement. CodeCheck evaluates expressions
recursively, so that variables that refer to expressions that contain expressions
are correctly set.

exp_empty_initializer Set to 1 when an empty initializer is found.

exp_not_ansi Set to 1 if a non-ANSI expression is found. This
variable does not trigger on C++ expressions.

exp_operands Set to the number of operands found in an expres-
sion, before macro expansion.

exp_operators Set to the number of standard C operators found in
an expression, before macro expansion.

exp_tokens Set to the number of tokens found in an expression,
before macro expansion.

Associated CodeCheck expression-functions:

exp_base_name() Class base-name of current expression. Useful for obtaining
resultant class-base-name of an overloaded function and/or
pointer linked overloaded functions.

 10/17/04 – 42 – CodeCheck

3.4 Function Variables

All predefined CodeCheck variables that have the prefix fcn_ refer to
characteristics of C functions. Every function variable is initialized to zero at
the start of execution, and again at the end of the scan of every
function. The special variables fcn_begin and fcn_no_header are triggered
when the beginning of a function definition is found.

fcn_aggr Set to the number of array, union, struct, or class
variables that are declared in a function (statistic).

fcn_array Set to the number of local array elements declared
in a function (statistic).

fcn_begin Set to 1 when the beginning of a function has been
found.

fcn_com_lines Set to the number of pure comment lines in the
definition of a C function (statistic).

fcn_decisions Set to the number of binary decision points in a
function (statistic).

fcn_end Set to 1 when the end of a function has been found.

fcn_exec_lines Set to the number of executable lines in the defini-
tion of a C function (statistic).

fcn_H_operands Set to the total number of Halstead operands found
in a function, before macro expansion (statistic).

fcn_H_operators Set to the total number of Halstead operators found
in a function before macro expansion (statistic).

fcn_high Set to the number of high-level statements found in
the definition of a C function (statistic).

fcn_locals Set to the number of local variables declared in a
function, including all nested compound statements
(statistic).

10/17/04 – 43 – CodeCheck

fcn_low Set to the number of low-level statements found in
the definition of a C function (statistic).

fcn_members Set to the number of local union, struct, or class
members declared in a function (statistic).

fcn_no_header Set to 1 when a function definition is found that is
not preceded by a stand-alone comment block.

fcn_nonexec Set to the number of non-executable statements
found in the definition of a C function (statistic).

fcn_operands Set to the total number of operands found in a func-
tion, before macro expansion (statistic).

fcn_operators Set to the total number of standard C operators
found in a function before macro expansion
(statistic).

fcn_register Set to the number of register variables declared
within the current function.

fcn_simple Set to the number of local simple variables (char,
short, long, int, float, double) declared in a function
(statistic).

fcn_tokens Set to the total number of tokens found in a function
before macro expansion (statistic).

fcn_total_lines Set to the total number of lines in the definition of a
C function (statistic).

fcn_u_operands Set to the number of unique operands found in a
function, before macro expansion (statistic).

fcn_u_operators Set to the number of unique operators found in a
function before macro expansion (statistic).

fcn_uH_operands Set to the number of unique Halstead operands
found in a function, before macro expansion (statis-
tic).

fcn_uH_operators Set to the number of unique Halstead operators
found in a function before macro expansion (statis-
tic).

 10/17/04 – 44 – CodeCheck

fcn_unused Set to the number of local variables declared in a
function but never used, including all nested com-
pound statements (statistic).

fcn_white_lines Set to the number of whitespace lines in the defini-
tion of a C function (statistic).

Associated CodeCheck functions:

char * fcn_name(void)

This function returns the name of the function that is currently being
checked.

Associated CodeCheck Variable:

stm_return_void Set to 1 if: (1) a return has no value in a function de-
clared to return a non-void type, (2) if a function has no return statement but
requires a returned value, or (3) if a return has a value in a function declared
to return void.

10/17/04 – 45 – CodeCheck

3.5 Identifier Variables

All predefined CodeCheck variables that have the prefix idn_ refer to
characteristics of variable and function names. Every CodeCheck identifier
variable is initialized to zero at the start of execution, and again at the end of
the scan of every variable and function used within executable code (i.e. not
within declarations or preprocessor directives).

idn_base Set to an integer which identifies the base type of
this identifier, using the same values as dcl_base
(section 3.2).

idn_bitfield Set to 1 when an identifier is a named bitfield.

idn_constant Set to 1 when an identifier is an enum constant.

idn_exception Actual usage of C++ exception in code.

idn_exception_base C++ exception base-type at trigger point idn_exception. See
check.cch for values returned.

idn_function Set to 1 when an identifier is a function name.

idn_global Set to 1 when an identifier has file scope and
external linkage.

idn_levels Set to the number of levels in the type of the identi-
fier. Each of these counts as a level: pointer to…,
array of…, function returning…, and reference to…
For simple variables the value of idn_levels is zero.

idn_line Set to the line number of the declaration in scope for
the identifier.

idn_local Set to 1 when an identifier has local scope (i.e. it was
declared within a function body).

idn_member Set to 1 when a C++ identifier has class scope.

idn_no_init Set to 1 if this identifier is a local variable whose
value is being used before it has not been initialized.

 10/17/04 – 46 – CodeCheck

idn_no_prototype Set to 1 if a function call is found without a proto-
type for the function in scope.

idn_not_declared Set to 1 when a function is called without any
declaration in scope.

idn_parameter Set to 1 when an identifier is a function parameter.

idn_storage_flags Set to an integer which identifies the storage class of
the identifier, using the same values as dcl_stor-
age_flags (section 3.2).

idn_variable Set to 1 when an identifier is a variable.

Associated CodeCheck functions:

char * idn_array_dim(int k)

If the kth level of type for this identifier is an array, then this function
returns the array dimension (or –1 if no dimension was given in the
declaration).

char * idn_base_name(void)

If the base type of the identifier is a tag (enum, union, struct, or class) or
typedef name, then this function returns the tag or typedef name as a
character string.

char *idn_exception_name()

Name of exception currently being used at trigger point idn_exception.

char * idn_filename(void)

Returns the name of the file that contains the declaration in scope for the
identifier. (See also idn_line).

int idn_level(int k)

This function returns the kind of the kth level of the identifier, using the
same values as dcl_level(k) (section 3.2).

10/17/04 – 47 – CodeCheck

int idn_level_flags(int k)

This function returns the flags for the kth level of the identifier, using the
same values as dcl_level_flags(k) (section 3.2).

char * idn_name(void)

Returns the name of the identifier.

 10/17/04 – 48 – CodeCheck

3.6 Lexical Variables

All predefined CodeCheck variables that have the prefix lex_ refer to
characteristics of lexical tokens, i.e. the names, numbers, operators, and punc-
tuation marks that comprise a C program. Every lexical variable is initialized
to zero at the start of execution, and again at the end of the scan of every
token.

lex_ansi_escape Set to 1 if an escape sequence contains one of the
new ANSI escape characters: a, v, or ?.

lex_assembler Set to 1 if embedded assembler code is detected.

lex_backslash Set to 1 if a backslash-newline pair is found at the
end of a line that is not part of a macro definition.

lex_bad_call Set to the difference between the number of argu-
ments found and the number of arguments expected
when a macro function is expanded.

lex_big_octal Set to 8 or 9, respectively, when a numeric escape
sequence or octal integer contains the digits 8 or 9.

lex_c_comment Set to 1 when a C comment (/* ... */) is found.

lex_cpp_comment Set to 1 when a C++ comment (//...) is found.

lex_char_empty Set to 1 if an empty character constant is found (e.g.
''). This variable does not flag the null character con-
stant ('\0').

lex_char_long Set to 1 if a character constant is longer than one
character.

lex_enum_comma Set to 1 when a list of enumerated constants ends
with a comma.

lex_constant When a constant is found this variable is set to one
of the following values, defined as manifest
constants in the CodeCheck standard header file
check.cch.The values are:

#define CONST_BOOL 1
#define CONST_ENUM 2
#define CONST_CHAR 3

10/17/04 – 49 – CodeCheck

#define CONST_INTEGER 4
#define CONST_FLOAT 5
#define CONST_STRING 6

lex_float Set to 1 if a numeric constant is found with the suf-
fix 'F' or 'f'.

lex_hex_escape When a hexadecimal escape sequence is found, this
variable is set to number of hexadecimal digits
found.

lex_initializer When an initializer is found this variable is set to
one of the following values, defined as manifest
constants in the CodeCheck header file
check.cch.The values are:

#define INIT_ZERO 1
#define INIT_INTEGER 2
#define INIT_BOOL 3
#define INIT_CHAR 4
#define INIT_FLOAT 5
#define INIT_STRING 6
#define INIT_OTHER 7

lex_intrinsic Set to 1 whenever an identifier is a function name
that is intrinsic to (i.e. predefined by) the compiler
chosen through the –K command-line option.

lex_invisible Set to 1 when an unscoped identifier is visible to
ANSI C and all versions of C++ prior to 3.0, but is
invisible to C++ 3.0.

lex_key_no_space Set to 1 when a keyword is not followed by a space.

lex_keyword Set to 1 when a keyword is found.

lex_lc_long Set to 1 if a constant is found with the suffix 'l'
(lower case “el”).

lex_long_float Set to 1 if a floating constant is found with the suffix
'L' or 'l' (upper or lower case “el”).

lex_long_long Signal "long long" 64 bit type.

lex_macro Set to 1 whenever a macro is about to expand. Call
function token() for the name of the macro to be
expanded.

 10/17/04 – 50 – CodeCheck

lex_macro_token Set to 1 if a lexical token originates from a macro ex-
pansion.

lex_metaware Set to 1 whenever a Metaware High C lexical exten-
sion to the C language is found.

lex_nl_eof Set to 1 if a non empty source file does not end with
a newline.

lex_nonstandard Whenever a character is found that is not in the
standard C set, the value of this variable is set to
the integer representation of the nonstandard
character.

lex_not_KR_escape Whenever an escape character is found that is not
defined by K&R (i.e. \n, \b, \t, \r, \f, \\, \", \')
then this variable is set to the integer representa-
tion of the character.

lex_not_manifest Set to 1 if a numeric constant other than 0 or 1 is
used in any context other than a macro definition or
a comment.

lex_null_arg Set to 1 if an actual argument is omitted in a macro
call, e.g. XYZ(abc,,123).

lex_num_escape Whenever a non zero numeric escape sequence is
found, the value of this variable is set to the value of
the numeric escape sequence.

lex_punct_after Set to 1 if a comma or semicolon is not followed by a
whitespace character, a comma, or a semicolon.

lex_punct_before Set to 1 if a comma or semicolon is preceded by a
space.

lex_radix Set to the radix of an integer constant (2, 8, 10, or
16).

lex_str_concat Set to 1 if two string constants are found, separated
only by whitespace.

lex_str_length Set to the length of a string literal (the terminating
zero is not counted).

lex_str_macro Set to 1 when a macro identifier is found within a
string constant.

10/17/04 – 51 – CodeCheck

lex_str_trigraph Set to 1 if a trigraph is found in a string literal.

lex_suffix Set to 1 if a numeric constant is found with any suf-
fix (F, f, L, l, U, or u), or combination of these.

lex_token Set to the index of the token within the current line
(1 for first, 2 for second, etc.) whenever a token is
found.

lex_trigraph Set to 1 if an ANSI trigraph is found (anywhere).

lex_uc_long Signal 'L' long type constant.

lex_unsigned Set to 1 if a numeric constant is found with the suf-
fix 'U' or 'u'.

lex_wide Set to 1 if an ANSI wide string or character constant
is found (prefix L).

lex_zero_escape When a zero numeric escape sequence is found, this
variable is set to 1 if the escape is within a character
literal, or 2 if the escape is within a string literal.

Associated CodeCheck functions:

int identifier(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever an identifier (a variable or function name) has
been encountered that matches the given string.

void ignore(char * name, ...)

This function causes the CodeCheck lexical analyzer to ignore any token
that matches one of the argument names. Every argument must be a string.

int keyword(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever a keyword has been encountered that matches the
given string.

 10/17/04 – 52 – CodeCheck

char next_char(void)

This function returns the lexical analyzer’s lookahead character: the char-
acter in the CodeCheck input stream that immediately follows the current
token. This function may not be used as a rule trigger.

char * prev_token(void)

This function returns the previous token that has being parsed by
CodeCheck. The token is in string form.

void skip_nonansi_ident(char c)

Skip non-ANSI identifiers beginning with '@','$' or '`'. The char parameter
of this function specifies the character which leads the identifier. The value of
the parameter only can be '@', '$' or '`'. The other characters have no effect for
this function.

char * token(void)

This function returns the current token that has being parsed by
CodeCheck. The token is in string form.

10/17/04 – 53 – CodeCheck

3.7 Line Variables

All predefined CodeCheck variables that have the prefix lin_ refer to
characteristics of lines of C code. Every line variable is initialized to zero at
the start of execution, and again at the end of the scan of every line. The
end of a line is marked by a newline character, or by a backslash-newline pair.

Note that lines of C code are conceptually different from simple C state-
ments, even though most programmers usually place no more than one state-
ment on each line. It is nevertheless possible to have more than one statement
on a line, or more than one line for a statement. For CodeCheck variables that
apply to statements, see the next section of this chapter.

lin_continuation Set to 1 if a line continues an expression or declara-
tion list from the previous line.

lin_continues Set to 1 if a line ends before the end of the current
expression.

lin_dcl_count Set to the number of identifiers declared on the cur-
rent line (includes tag definitions and function para-
meters).

lin_depth Set to the #include file nesting level.

lin_end Set to 1 when an end-of-line marker has been found
(a newline character or the backslash-newline pair).

lin_has_code Set to 1 if a line contains code.

lin_has_comment Set to 1 if a line has a comment that contains text.

lin_has_label Set to 1 if a line contains a label.

lin_header Set to 1 if the current line was obtained from a pro-
ject header file via #include "filename". Set to 2 if
the current line was obtained from a system header
file via #include <filename>.

lin_include_kind If the line is a preprocessor line with #include. Set to
1 if the file included is a user header file, e.g. “hdr.h”.

 10/17/04 – 54 – CodeCheck

Set to 2 if the file included is a system header files
e.g. <hdr.h>

lin_indent_space Set to the number of leading space characters found
before the first non-white non-comment character of
a line.

lin_indent_tab Set to the number of leading tab characters found
before the first non-white non-comment character of
a line.

lin_is_comment Set to 1 if a line has no C code and either contains a
comment or is contained within a comment. The
comment must contain text to qualify as a real
comment.

lin_is_white Set to 1 if a line consists entirely of whitespace (tabs
& spaces), or is a comment line without any text.

lin_is_exec Set to 1 if a line contains code that is executable.

lin_length Set to the number of characters in the line
(excluding the newline character at the end of the
line).

lin_nest_level Set to each line’s nominal indentation level. This
value may differ from the actual indentation of the
line (for actual indentation, see lin_indent_tab and
lin_indent_space). CodeCheck assumes that curly
braces are to be indented only if the command line
option –B has been given.

lin_nested_comment Set to 1 if a /*...*/ comment is found nested within
another /*...*/ comment.

lin_number Set to the number of the current line, relative to the
start of the current file.

lin_operands Set to the number of operands found in a line of
code, before macro expansion.

lin_operators Set to the number of standard C operators found in
a line of code before macro expansion.

lin_preprocessor Set to a non-zero value representing the type of a
preprocessor line (i.e. begins with #). The manifest

10/17/04 – 55 – CodeCheck

constants are defined in the CodeCheck header file
check.cch. The constants are:

#define DEFINE_PP_LIN 1 /* #define */
#define UNDEF_PP_LIN 2 /* #undef */
#define INCLUDE_PP_LIN 3 /* #include */
#define IF_PP_LIN 4 /* #if */
#define IFDEF_PP_LIN 5 /* #ifdef */
#define IFNDEF_PP_LIN 6 /* #ifndef */
#define ELSE_PP_LIN 7 /* #else */
#define ELIF_PP_LIN 8 /* #elif */
#define ENDIF_PP_LIN 9 /* #endif */
#define PRAGMA_PP_LIN 10 /* #pragma */
#define LINE_PP_LIN 11 /* #line */
#define ERROR_PP_LIN 12 /* #error */
#define ASM_PP_LIN 13 /* #asm */
#define ENDASM_PP_LIN 14 /* #endasm */
#define C_INCLUDE_PP_LIN 15 /* #c_include */
#define R_INCLUDE_PP_LIN 16 /* #r_include */
#define RC_INCLUDE_PP_LIN 17 /* #rc_include */
#define INC_NEXT_PP_LIN 18 /* #include_next */
#define OPTION 19 /* #option */

lin_source Set to 1 if the current line was not obtained from a
header file.

lin_suppressed Set to 1 if compilation of the current line has been
suppressed by the preprocessor.

lin_tokens Set to the number of tokens found in a line of code
before macro expansion.

lin_within_class Set to 1 if the current line is inside a C++ class defi-
nition, or 2 if it is within a member function defini-
tion that is outside the class definition.

lin_within_function Set to 1 if the current line is inside a function defini-
tion.

lin_within_tag Set to 1 if the current line is within an enumeration,
2 if it is within a union, 3 if it is within a struct, and
4 if it is within a class. This variable is not set for
lines within class member function definitions.

Associate CodeCheck functions:

 10/17/04 – 56 – CodeCheck

char * lin_include_name(void)

This function returns the file name included if this line is a preprocessor
line with #include.

char * line(void)

This function returns the current input line as a null-delimited string. This
string does not end with a new-line character.

10/17/04 – 57 – CodeCheck

3.8 Module Variables

All predefined CodeCheck variables that have the prefix mod_ refer to
characteristics of modules, i.e. independently compilable source files with the .c
filename extension, not header files with the .h extension. Every module
variable is initialized to zero at the start of execution, and again at the end
of the scan of every module. The special variable mod_begin is triggered
just before a module is read.

Associated CodeCheck functions:

char * mod_name(void)

This function returns the name of the module that is currently being
checked. A “module” is a C source file and all of its header files. Its name is the
name of the first source file in the module.

int mod_class_lines(int index)

This function returns the total number of lines in each named class, struct,
or union defined in the module, indexed by its order within the module. These
lines include lines in definitions of member functions that are outside the class
definition. The index is zero-based: the first tag has index 0 and the number of
classes is given by mod_classes.

char * mod_class_name(int index)

This function returns the name of each named class, struct, or union
defined in the module, indexed by its order within the module. The index is
zero-based: the first tag has index 0 and the number of classes is given by
mod_classes.

int mod_class_tokens(int index)

This function returns the number of tokens in each named class, struct, or
union defined in the module, indexed by its order within the module. Tokens

 10/17/04 – 58 – CodeCheck

in definitions of member functions defined outside the class definition are
included in the token count. The index is zero-based: the first tag has index 0
and the number of classes is given by mod_classes.

10/17/04 – 59 – CodeCheck

3.9 Operator Variables

All predefined CodeCheck variables that have the prefix op_ refer to char-
acteristics of operators. Every operator variable is initialized to zero at the
start of execution. When an operator is encountered the relevant operator
variables are set. All operator variables are reset to zero immediately after all
relevant rules have been triggered. There are three distinct kinds of operators
handled here: executable operators (high-, medium-, and low-precedence),
keyword operators (for executable keywords like if, while, and return), and
non-executable operators (for punctuation marks and declarator symbols).

The operands of an operator are counted in the order from right to left. For
example, to get an operand's information with a function such as op_base(),
op_levels() etc. from expression “a + b”, the first operand is b and the second
operand is a.

3.9.1 High Precedence Operators

op_address Set to 1 when an address-of (&) operator is
executed (one operand). Note: this is not the same
as the “reference to” declarator symbol , which has
the same appearance.

op_arrow Set to 1 when an indirect member selector (->) is
executed (one operand).

op_bit_not Set to 1 when a bitwise NOT (~) operator is executed
(one operand).

op_call Set to 1 when a function is called (i.e. just after the
close parenthesis that ends a function argument list
is found in executable code). The number of
arguments is given by op_operands.

op_call_overload This C++ method call is overloaded. Function return
type is context dependent. Function exp_base_name()
may be used to determine actual return class base-
name chosen.

op_catch The "catch" keyword is set to one when the C++
error handling keyword is seen.

 10/17/04 – 60 – CodeCheck

op_delete Set to 1 when the C++ keyword delete is executed
(one operand).

op_indirect Set to 1 when an indirection (*) operator is executed
(one operand). Note: this is not the same as the non-
executable “pointer to” declarator symbol, which has
the same appearance.

op_log_not Set to 1 when a logical negation (!) operator is exe-
cuted (one operand).

op_member Set to 1 when a direct member selector (.) is exe-
cuted (one operand).

op_memptr Set to 1 when a C++ member pointer (–>*) is exe-
cuted (two operands).

op_memsel Set to 1 when a C++ member selector (.*) is exe-
cuted (two operands).

op_negate Set to 1 when an arithmetic negation (-) operator is
executed (one operand).

op_new Set to 1 when the C++ keyword new is executed. The
number of operands found is given by op_operands.

op_plus Set to 1 when the unary plus (+) operator is
executed (one operand). Note: this is not the binary
add operator.

op_post_decr Set to 1 when a postfix decrement (--) operator is ex-
ecuted (one operand).

op_post_incr Set to 1 when a postfix increment (++) operator is
executed (one operand).

op_pre_decr Set to 1 when a prefix decrement (--) operator is exe-
cuted (one operand).

op_pre_incr Set to 1 when a prefix increment (++) operator is
executed (one operand).

op_sizeof Set to 1 when a sizeof operator is evaluated (one
operand).

op_subscript Set to 1 when a subscript ([]) is evaluated (two oper-
ands).

10/17/04 – 61 – CodeCheck

op_throw The C++ "throw" keyword.

op_try The C++ "try" keyword.

3.9.2 Medium Precedence Operators

op_add Set to 1 when an add (+) operator is executed (two
operands).

op_based Set to 1 when a Microsoft “based” (:>) operator is ex-
ecuted (two operands).

op_bit_and Set to 1 when a bitwise AND (&) operator is exe-
cuted (two operands).

op_bit_or Set to 1 when a bitwise OR (|) operator is executed
(two operands).

op_bit_xor Set to 1 when a bitwise XOR (^) operator is
executed (two operands).

op_cast Set to 1 when a cast is executed (two operands: the
first is the operand to be type-cast, the second is the
result type).

op_div Set to 1 when a division (/) operator is executed (two
operands).

op_equal Set to 1 when a == operator is executed (two oper-
ands).

op_init Set to 1 when the initialization operator is
evaluated (one operand).

op_left_shift Set to 1 when a left shift (<<) operator is executed
(two operands).

op_less Set to 1 when a less than (<) operator is executed
(two operands).

op_less_eq Set to 1 when a <= operator is executed (two oper-
ands).

op_log_and Set to 1 when a logical conjunction (&&) operator is
executed (two operands).

 10/17/04 – 62 – CodeCheck

op_log_or Set to 1 when a logical disjunction (||) operator is
executed (two operands).

op_more Set to 1 when a more than (>) operator is executed
(two operands).

op_more_eq Set to 1 when a >= operator is executed (two oper-
ands).

op_mul Set to 1 when a multiplication (*) operator is exe-
cuted (two operands).

op_not_eq Set to 1 when a != operator is executed (two oper-
ands).

op_rem Set to 1 when a remainder (%) operator is executed
(two operands).

op_right_shift Set to 1 when a right shift (>>) operator is executed
(two operands).

op_subt Set to 1 when a subtract (-) operator is executed (two
operands).

3.9.3 Low Precedence Operators

op_add_assign Set to 1 when a += operator is executed (two oper-
ands).

op_and_assign Set to 1 when a &= operator is executed (two
operands).

op_assign Set to 1 when an assignment (=) operator is
executed (two operands).

op_assoc Set to 1 when the Metaware association operator
(=>) is executed (two operands).

op_cond Set to 1 when a conditional (?) operator is executed
(three operands).

op_div_assign Set to 1 when a /= operator is executed (two oper-
ands).

op_iterator_call Set to 1 when a Metaware iterator operator (<–) is
executed (two operands).

10/17/04 – 63 – CodeCheck

op_left_assign Set to 1 when a <<= operator is executed (two oper-
ands).

op_mul_assign Set to 1 when a *= operator is executed (two oper-
ands).

op_or_assign Set to 1 when a |= operator is executed (two oper-
ands).

op_rem_assign Set to 1 when a %= operator is executed (two oper-
ands).

op_right_assign Set to 1 when a >>= operator is executed (two oper-
ands).

op_sub_assign Set to 1 when a -= operator is executed (two oper-
ands).

op_xor_assign Set to 1 when a ^= operator is executed (two oper-
ands).

3.9.4 Punctuation Marks and Declarator Symbols

op_close_angle Set to 1 when the close angle bracket (>) of a C++
template argument list is found

op_close_brace Set to 1 when a close curly brace (}) is found.

op_close_bracket Set to 1 when a close bracket (]) is found.

op_close_funargs Set to 1 when the close parenthesis of a function ar-
gument list is found.

op_close_paren Set to 1 when a close parenthesis for a
subexpression has been found.

op_colon_1 Set to 1 when a “unary” colon is found (e.g. in the
label default:).

op_colon_2 Set to 1 when a “binary” colon is found (e.g. in the
expression x = flag ? 0 : 1).

op_comma Set to 1 when a operator (not the comma separator)
is found. See op_separator.

 10/17/04 – 64 – CodeCheck

op_destroy Set to 1 when the C++ destructor symbol (~) is
found.

op_iterator Set to 1 when a Metaware iterator symbol (–>) is
found.

op_macro_arg A macro function call argument. Set to 1 when a
macro argument is parsed. Fires between
op_macro_begin and op_macro_call.

op_macro_begin Set to 1 when a macro function call is first seen.

op_macro_call Set to 1 when a macro function is about to be ex-
panded, e.g. all arguments have been collected.

op_open_angle Set to 1 when the open angle bracket (<) of a C++
template argument list is found.

op_open_brace Set to 1 when an open curly brace ({) is found.

op_open_bracket Set to 1 when an open bracket ([) is found.

op_open_funargs Set to 1 when the left parenthesis of a function argu-
ment list is found.

op_open_paren Set to 1 when an open parenthesis for a
subexpression has been found.

op_pointer Set to 1 when the “pointer-to” (*) declarator symbol
is found. Note: this is not the same as the
indirection operator (see op_indirect).

op_reference Set to 1 when the “reference-to” (&) declarator sym-
bol is found. Note: this is not the same as the
address operator (see op_address).

op_scope Set to 1 when a C++ scope (::) symbol is found.

op_semicolon Set to 1 when a semicolon is found.

op_separator Set to 1 when the comma expression separator is
found. Note: this is not the same as the comma
operator (see op_comma).

10/17/04 – 65 – CodeCheck

3.9.5 Halstead Keyword Operators

op_break Set to 1 when the break keyword is found.

op_continue Set to 1 when the continue keyword is found.

op_do Set to 1 when the do keyword is found.

op_else Set to 1 when the else keyword is found.

op_for Set to 1 when the for keyword is found.

op_goto Set to 1 when the goto keyword is found.

op_if Set to 1 when the if keyword is found.

op_return Set to 1 when the return keyword is found.

op_switch Set to 1 when the switch keyword is found.

op_while_1 Set to 1 when the while keyword is found (unless it
is part of a do-while construct).

op_while_2 Set to 1 when the while keyword is found as part of a
do-while construct.

3.9.6 Operator Descriptors (not alphabetical)

op_operands Set to the number of operands expected whenever
an executable operator is found. If the operator is a
function call (op_call), then this variable is set to the
number of actual arguments in the argument list. If
the operator is a cast (op_cast), then this variable is
set to 2 (the first operand is the type of the operand
to be type-cast, the second is the result type).

op_punct Set to 1 for punctuation marks.

op_low Set to 1 for operators with low precedence.

op_medium Set to 1 for operators with medium precedence.

op_high Set to 1 for high precedence operators.

 10/17/04 – 66 – CodeCheck

op_keyword Set to 1 if this is token is a keyword that would be
considered by Halstead to be an operator: if, else, do,
for, while, switch, break, continue, goto, and return.

op_Halstead Set to 1 for those tokens that Halstead would have
considered to be operators. These include all opera-
tors found within executable code and certain key-
words (if, else, do, for, while, switch, break, continue,
goto, and return), but exclude all operators found
within declarations.

op_executable Set to 1 if this is a standard operator that is
executable.

op_declarator Set to 1 if the operator is within a declaration, not
including initializers.

op_bitwise Set to 1 when any bitwise operator is found.

op_prefix Set to 1 for unary prefix operators.

op_infix Set to 1 for binary infix operators.

op_postfix Set to 1 for unary postfix operators.

op_cast_to_ptr Set to 1 when a cast operator has the form (type *).

op_space_before Set to 1 if an operator or punctuation mark is pre-
ceded by a space character.

op_space_after Set to 1 if an operator or punctuation mark is fol-
lowed by a space character.

op_white_before Set to 1 if an operator or punctuation mark is pre-
ceded by whitespace.

op_white_after Set to 1 if an operator or punctuation mark is fol-
lowed by whitespace.

10/17/04 – 67 – CodeCheck

Associated CodeCheck functions:

char * op_array_dim(int j, int k)

When an operator is executed, if the kth level of the jth operand is an array,
then this function returns the array dimension (or –1 if no dimension was
given).

int op_base(int j)

When an operator is executed, this function returns the base type of the jth

operand, using the same values as dcl_base (section 3.2).

char * op_base_name(int j)

If the base type of the jth operand of an executable operator is a tag (enum,
union, struct, or class) or typedef name, then this function returns the tag or
typedef name as a character string.

int op_bitfield(int j)

Returns 1 if the base type of the jth operand of an executable operator is a
bitfield, otherwise zero.

char * op_function(void)

When op_open_funargs, op_close_funargs, or op_call is triggered, this func-
tion returns the name of the function that is to be declared or called. When an
expression has to be evaluated in order to find which function to call, e.g.
through a function pointer, then this function returns an empty string.

int op_level(int j, int k)

When an operator is executed, this function returns the kind of the kth level
of the jth operand, using the same values as dcl_level(k) (section 3.2).

 10/17/04 – 68 – CodeCheck

int op_level_flags(int j, int k)

When an operator is executed, this function returns the flags for the kth

level of the jth operand, using the same values as dcl_level_flags(k) (section
3.2).

int op_levels(int j)

When an operator is executed, this function returns the number of levels of
the jth operand, using the same values as dcl_levels (section 3.2).

char * op_macro(void)

When a macro function with arguments is about to be expanded, (i.e. when
op_macro_call is triggered), this function returns the name of the macro func-
tion that is to be expanded. Important: this function only applies to macros
with arguments.

int op_parened_operand(int j)

When an operator is executed, this function checks if the jth operand is an
expression within a pair of parenthesis. If yes, function returns 1, otherwise 0.

void skip_macro_ops(int b)

This function gives a way to control whether op_ variables are effective on
operators from macro expansion. If operators from a macro expansion need to
be counted, call this function with zero as an argument, by default, CodeCheck
acts like skip_macro_ops(1) has been called.

10/17/04 – 69 – CodeCheck

3.10 Preprocessor Variables

All predefined CodeCheck variables that have the prefix pp_ refer to char-
acteristics of preprocessor directives, i.e. lines that begin with the character #.
Every preprocessor variable is initialized to zero at the start of execution, and
again at the end of the scan of every preprocessor directive.

pp_ansi Set to 1 if a preprocessor feature is encountered that
is new with the ANSI standard.

pp_arg_count Set to the number of formal parameters found in a
macro definition. (Use pp_empty_arglist to detect
macro “functions” with zero parameters)

pp_arg_multiple Set to 1 if a macro formal parameter is used more
than once in the macro definition.

pp_arg_paren Set to 1 if a macro formal parameter is used without
being surrounded by parentheses.

pp_arg_string Set to 1 if a macro formal parameter is found inside
a string literal in the macro definition.

pp_arith Set to 1 if a preprocessor directive requires arith-
metic calculation.ifif

pp_assign Set to 1 if a macro definition is a simple assign-
ment.definedefine

pp_bad_white Set to 1 if a non-space, non-tab whitespace character
(e.g. vertical tab, form-feed, or backspace) is encoun-
tered within a preprocessor directive.

pp_benign Set to 1 if a macro is redefined to be virtually identi-
cal to its previous definition.

pp_comment Set to 1 if two tokens within a macro definition are
separated only by a comment.

pp_const Set to 1 if a macro is a manifest constant (it has no
formal parameters and its body consists of a string,
character, or numeric constant).

 10/17/04 – 70 – CodeCheck

pp_defined Set to 1 if the defined preprocessor function is en-
countered.

pp_depend Set to 1 if undefundefundef is used on a macro that
is used by other macros.

pp_elif Set to 1 if the elifelifelif preprocessor directive is en-
countered.elifelifelif

pp_endif Set to 1 if the endifendifendif preprocessor directive
is encountered.endifendifendif

pp_empty_arglist Set to 1 if the definition of a macro “function” has no
formal parameters.

pp_empty_body Set to 1 if the definition of a macro has no body.

pp_error Set to 1 if the #error preprocessor directive is en-
countered.errorerror

pp_if_depth Set to the new depth of conditional compilation
whenever an #if, #ifdef, #ifndef, #else, #elif, or #endif
directive is activated.

pp_include After an #include directive has been read, but before
the header is actually opened, this variable is set to
one of the following values:

1: filename is in quotes, from a macro expansion,
2: filename is in quotes, not from a macro,
3: filename is in angle brackets, from a macro,
4: filename is in angle brackets, not from a macro.
5: filename is not enclosed (Metaware only),
6: filename is not enclosed (Vax VMS only).

pp_include_depth Set to the new depth of file inclusion whenever an
includeincludeinclude directive is executed, or an
end-of-file in a header file is encountered. See also
lin_source.

pp_include_white Set to 1 if the filename in an #include directive has
leading whitespace.

pp_keyword Set to 1 if a macro name is a reserved ANSI or C++
keyword, (but not if it is an implementation-specific
reserved keyword, e.g. near).

10/17/04 – 71 – CodeCheck

pp_length Set to the length (in characters) of the body of a
macro definition. Each occurrence of whitespace
within the body of the macro counts as one
character.

pp_lowercase Set to 1 if the macro name in a macro definition is
defined with any letters that are lowercase.

pp_macro Set to the length in characters of a macro name
when it is defined.

pp_macro_conflict Set to 1 if a macro is defined differently in separate
modules of a project.

pp_macro_dup Set to 1 if a macro is defined in more than one file.

pp_not_ansi Set to 1 whenever the preprocessor is used in a way
that violates the ANSI standard.

pp_not_defined Set to 1 if a preprocessor arithmetic expression (e.g.
in an #if directive) uses an identifier that has not
been defined as a macro.

pp_not_found Set to 1 when an #include file could not be found.

pp_overload Set to 1 if a variable name conflicts with a macro
function name.

pp_paste Set to 1 if the ANSI paste operator (##) is found in a
macro definition.

pp_paste_failed Set to 1 if the operands of the ANSI paste operator
(##) could not be pasted together. According to
ANSI, the result is undefined, and is therefore not
portable.

pp_pragma Set to 1 if a pragmapragmapragma preprocessor
directive is encountered.

pp_recursive Set to 1 if a recursive macro definition is found.

pp_relative Set to 1 when an #include directive within a header
file specifies a relative pathname.

pp_semicolon Set to 1 if a macro definition ends with a semicolon.

 10/17/04 – 72 – CodeCheck

pp_sizeof Set to 1 if a preprocessor directive requires the use
of a sizeof operator.

pp_stack Set to 1 if a macro is redefined within a module (0 if
the redefinition is benign).

pp_stringize Set to 1 if the ANSI “stringize” operator (#) is found
in a macro definition.

pp_sub_keyword Set to 1 if the keyword in a preprocessor directive is
itself a macro name.

pp_trailer Set to 1 if a preprocessor line contains any nonwhite
characters after the end of the directive and before
the end of the line.

pp_undef Set to 1 whenever undefundefundef is used.undef

pp_unknown Set to 1 if a preprocessor directive is found with
which CodeCheck is unfamiliar.

pp_unstack Set to 1 if #undef is used to unstack multiply-defined
macros.undefundefundef

pp_white_before Set to the amount of whitespace (in characters) that
precedes the # character in a preprocessor directive.

pp_white_after Set to the amount of whitespace (in characters) that
is found after the # character and before the key-
word in a preprocessor directive.

Associated CodeCheck variables:

conflict_line When pp_macro_conflict is triggered (when a macro
definition conflicts with an earlier definition), this
variable is set to the line number for the earlier
definition. The file name is returned by the function
conflict_file().

Associated CodeCheck functions:

10/17/04 – 73 – CodeCheck

char * conflict_file(void)

When pp_macro_conflict is triggered (when a macro definition conflicts
with an earlier macro definition), this function returns the name of the file for
the earlier definition. The line number is given by the variable conflict_line.

void define(char * name, char * body)

This function defines a macro with the specified name and body, just as
though the definition had appeared in the source file. The macro may not have
any arguments.

char * header_name(void)

When a header file is about to be opened with the #include directive, this
function returns the filename. It may be used as a trigger in a CodeCheck
rule. The event that trigggers this function occurs before pp_include is
triggered.

char * header_path(void)

When a header file is about to be opened with the #include directive, this
function returns the pathname to the directory in which the header was found.
If the header path is the current directory, then header_path() returns zero. It
may be used as a trigger in a CodeCheck rule. The event that trigggers this
function occurs before pp_include is triggered.

int macro(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever a macro with the given name is about to be ex-
panded.

int macro_defined(char *name)

This function inquires if the macro with specified name has been defined at
the point where it triggers the rule containing the call to this function. If the
macro has been found defined, the function returns 1, otherwise 0. Do not use
this function in the rule triggered by prj_begin because at that time the
macros have not been defined yet. Also this function is not for the use as a
trigger.

 10/17/04 – 74 – CodeCheck

char * op_macro(void)

When a macro function with arguments is about to be expanded, (i.e. when
op_macro_call is triggered), this function returns the name of the macro func-
tion that is to be expanded. Important: this function only applies to macros
with arguments.

void pp_error_severity(int s)

This function controls how to deal with the preprocessor directive #error.
Normally, CodeCheck will quit execution after giving a fatal error message
with the string following #error once an #error directive is encountered. This is
also the way a majority of C/C++ compilers behave. However, there are some
C/C++ compilers that allow users to use this directive just for displaying
messages and proceed with the compilation. To make CodeCheck allow
checking to continue on #error directives, call this function with INFO_PP as
an argument. To make CodeCheck treat #error directives as fatal errors, call
this function with ERROR_PP as an argument. INFO_PP and ERROR_PP
are defined in file check.cch. They are defined as:

#define INFO_PP 0

#define ERROR_PP 1

CodeCheck acts like pp_error_severity(PP_ERROR) has been called by
default.

char * pp_name(void)

When a macro is defined, this function returns the name of the macro.

int pragma(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns 1 whenever a pragma of the specified name is found.

void undefine(char * name)

This function undefines the macro with the specified name.

10/17/04 – 75 – CodeCheck

3.11 Project Variables

All CodeCheck predefined variables that have the prefix prj_ refer to
characteristics of entire projects. These variables are initialized to zero at the
start of execution, and all except prj_begin receive their values when the end
of a project has been found. The special variable prj_begin is triggered just
before a project is checked. If CodeCheck has been called for a single source file
only, then this file is considered to be the entire project.

prj_aggr Set to the number of external array, union, struct,
or class variables in a project.

prj_array Set to the number of external array elements in a
project.

prj_begin Set to 1 at the start of a project.

prj_com_lines Set to the number of pure comment lines in a
project.

prj_conflicts Set to the number of conflicting macro definitions
found in a project.

prj_decisions Set to the number of binary decision points in a pro-
ject.

prj_end Set to 1 when a project has been completely read.

prj_exec_lines Set to the number of executable lines in a project.

prj_functions Set to the number of functions defined in a project.
C++ class member functions and functions that are
declared but never defined are not counted.

prj_globals Set to the number of external variables in a project.

prj_H_operands Set to the number of Halstead operands found in a
project before macro expansion.

prj_H_operators Set to the number of Halstead operators found in a
project before macro expansion.

 10/17/04 – 76 – CodeCheck

prj_headers Set to the number of header (.h) files read. Each
header file is only counted once.

prj_high Set to the number of high-level statements found in
a project.

prj_low Set to the number of low-level statements found in a
project.

prj_macros Set to the number of macros defined in a project.

prj_members Set to the number of members of union, struct, or
class global tags (i.e. declared with file scope).

prj_modules Set to the number of source (.c) files read.

prj_nonexec Set to the number of non-executable statements
found in a project.

prj_operands Set to the number of operands found in a project, be-
fore macro expansion.

prj_operators Set to the number of operators found in a project
before macro expansion.

prj_simple Set to the number of simple external variables
(char, short, long, int, unsigned, float, or double) in
a project.

prj_tokens Set to the number of tokens found in a project before
macro expansion.

prj_total_lines Set to the total number of lines in a project.

prj_u_operands Set to the number of unique operands found in a
project, before macro expansion.

prj_u_operators Set to the number of unique operators found in a
project before macro expansion.

prj_uH_operands Set to the number of unique Halstead operands
found in a project, before macro expansion.

prj_uH_operators Set to the number of unique Halstead operators
found in a project before macro expansion.

prj_unused Set to the number of unused external variables in a
project.

10/17/04 – 77 – CodeCheck

prj_warnings Set to the number of CodeCheck warnings issued for
this project.

prj_white_lines Set to the number of whitespace lines in a project.

Associated CodeCheck functions:

char * prj_name(void)

This function returns the name of the project that is currently being
checked, i.e. the name of the .ccp file that identifies the component modules of a
project to CodeCheck. If there is no project file, then this function returns the
name of the first source file in the command-line.

 10/17/04 – 78 – CodeCheck

3.12 Statement Variables

All predefined CodeCheck variables that have the prefix stm_ refer to
characteristics of C statements, broadly interpreted. CodeCheck defines a C
statement as any of these entities: a declaration, a type definition, a simple ex-
ecutable statement that ends with a semicolon, a compound statement that
begins and ends with braces, or a goto, for, while, switch, if or do statement.
Every statement variable is initialized to zero at the start of execution, and
again at the end of the scan of every statement. CodeCheck evaluates
statements recursively, so that variables that refer to statements that contain
statements are correctly set.

Note that simple C statements are conceptually very different from lines of
C code, even though most programmers place at most one statement on each
line. It is nevertheless possible to have more than one statement per line, or
more than one line per statement. For CodeCheck variables that apply to lines
of code, see the Section 3.7.

Several statement variables are set to a value which indicates the kind of
statement that has been found. These values are defined as manifest constants
in the CodeCheck header file check.cch. The constants are:

#define IF 1 // if statement
#define ELSE 2 // else statement
#define WHILE 3 // while statement
#define DO 4 // do statement
#define FOR 5 // for statement
#define SWITCH 6 // switch statement
#define TRY 7 // try statement
#define CATCH 8 // catch statement
#define FCN_BODY 9 // function definition
#define COMPOUND 10 // compound statement (*)
#define EXPRESSION 11 // expression statement
#define BREAK 12 // break statement
#define CONTINUE 13 // continue statement
#define RETURN 14 // return statement
#define GOTO 15 // goto statement
#define DECLARE 16 // declaration statement
#define EMPTY 17 // empty statement

* ? A compound statement is a group of statements surrounded by curly
braces.

10/17/04 – 79 – CodeCheck

stm_aggr Set to the number of array, union, struct, or class
variables declared in a compound statement.

stm_array Set to the number of local array elements declared
in a compound statement.

stm_bad_label Set to 1 whenever a label or list of labels is found
that is not attached to any statement.

stm_cases Set to the number of case labels attached to this
statement (includes the default label).

stm_catchs Set to the number of exception handler’s in a try-
block.

stm_container Set to the kind of high-level statement that contains
the current statement (IF through COMPOUND).

stm_cp_begin When the open curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (IF through
COMPOUND).

stm_cp_assign Set to the number of compound assignment opera-
tors (e.g. +=, |=) found in a low-level statement.

stm_depth Set to the logical depth of a statement, i.e. its nest-
ing level within if, for, while, and do statements.

stm_end Set to 1 when the end of a statement has been
found.

stm_end_tryblock Set to 1 when the end of a try-block is found, at the
closing brace of last catch clause.

stm_goto Set to 1 if a goto enters a block that has automatic or
register variable initializers.

stm_is_comp When the close curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (IF through
COMPOUND).

stm_if_else Set to 1 if there is a matching else statement for an
if statement, set at the end of if statement.

stm_is_expr Set to 1 if this is an expression statement.

 10/17/04 – 80 – CodeCheck

stm_is_high Set to 1 if this is a compound, selection, or iteration
statement (IF through COMPOUND).

stm_is_iter Set to 1 if this is an iteration statement (WHILE,
DO, or FOR).

stm_is_jump Set to 1 if this is a jump statement (BREAK through
GOTO).

stm_is_low Set to 1 if this is an expression or jump statement
(EXPRESSION, BREAK, CONTINUE, RETURN
or GOTO). This variable will also trigger on a local
C++ declaration that has an initializer.

stm_is_nonexec Set to 1 if this is a local declaration. This does not
trigger on a local C++ declaration that has an ini-
tializer.

stm_is_select Set to 1 if this is a selection statement (IF, ELSE, or
SWITCH).

stm_kind Set to the kind of the current statement (IF through
EMPTY).

stm_labels Set to the number of ordinary labels (not including
case or default labels) attached to this statement.

stm_lines Set to the number of lines in a statement.

stm_locals Set to the number of local variables declared in a
compound statement.

stm_loop_back Set to 1 when a goto statement is found that
transmits control back to a previous label.

stm_members Set to the number of local union, struct, or class
members declared in a compound statement.

stm_need_comp Set to 1 if a statement contained by if, else, while, do
and for is not a compound statement.

stm_never_caught Set to 1 if an exception handler (catch) will never
be reached because the type is shadowed by the
previous handler(s).

10/17/04 – 81 – CodeCheck

stm_no_break Set to 1 if the current statement is a case statement
in a switch, and the previous case did not terminate
with a transfer of control (e.g. a break or return).

stm_no_default Set to 1 if the current statement is a switch without
a default case.

stm_operands Set to the total number of operands found in a state-
ment, before macro expansion.

stm_operators Set to the total number of standard C operators
found in a statement.

stm_relation Set to the number of Boolean relational operators
found in a statement.

stm_return_paren Set to 1 if a return has a value that is not enclosed
in parentheses.

stm_return_void Set to 1 if: (1) a return has no value in a function de-
clared to return a non-void type, (2) if a function has
no return statement but requires a returned value,
or (3) if a return has a value in a function declared
to return void.

stm_semicolon Set to 1 if a suspicious semicolon is found, e.g. in the
statement while(x); .

stm_simple Set to the number of local simple variables (char,
short, long, int, unsigned, float, or double) declared
in a compound statement.

stm_switch_cases Set to the number of cases found in a switch.

stm_tokens Set to the number of tokens found in a statement.

stm_unused Set to the number of local variables declared in a
compound statement but never used.

 10/17/04 – 82 – CodeCheck

3.13 Structure and Class Variables

All predefined CodeCheck variables that have the prefix tag_ refer to
characteristics of the definitions of classes, structs, unions, and enums. Every
CodeCheck tag variable is initialized to zero at the start of execution, and
again at the end of the scan of every tag definition. CodeCheck
evaluates tag definitions recursively, so that variables that refer to tags that
contain tag definitions are correctly set. Except when it is clear from context,
the C++ term “class” in the following may be taken to mean class, struct, or
union.

tag_abstract Set to 1 if this is an abstract class (i.e. it has at least
one pure virtual member function).

tag_anonymous Set to 1 if this tag is anonymous (has no tag name).

tag_base_access Set to 1 if a base class does not have an explicit
access specifier (public, protected, or private).

tag_bases Set to the number of direct base classes declared for
this class.

tag_begin Set to 1 when the left curly brace of a tag definition
is found.

tag_classes Set to the number of tags defined within this class.
This count includes enum tags and excludes anony-
mous (unnamed) tags.

tag_constants Set to the number of enumerated constants defined
in this class.

tag_constructors Set to the number of constructors declared in this
class.

tag_distance Set to 1 for a near class, 2 for a far class, 3 for a huge
class, and 4 for an export class.

tag_end Set to 1 at the end of a tag definition.

tag_fcn_friends Set to the number of friend functions declared in
this class.

10/17/04 – 83 – CodeCheck

tag_friends Set to the number of friend classes declared in this
class.

tag_functions Set to the number of C++ member functions
declared in this class.

tag_global Set to 1 if this tag has file scope.

tag_has_assign Set to 1 if this class has an operator= function.

tag_has_copy Set to 1 if this class has an explicit copy constructor.

tag_has_default Set to 1 if this class has an explicit default
constructor (a constructor with no parameters).

tag_has_destr Set to 1 if this class has an explicit destructor.

tag_hidden Set to 1 when this local tag definition hides another
at file or local scope.

tag_kind Set to 1 for an enum, 2 for a union, 3 for a struct, or
4 for a class.

tag_lines Set to the number of lines in the tag definition.

tag_local Set to 1 if this tag is local (i.e. defined within a func-
tion definition).

tag_mem_access Set to 1 if the first member of a class, struct, or
union does not have an explicit access label (public,
protected, or private).

tag_members Set to the number of data members (also known as
instance variables) declared in this tag. Not counted
are: C++ member functions, enumerated constants
(except in enum tags), typedef names, components of
nested tags (if named), and components of base
classes. Use the function tag_components() for
detailed counts.

tag_nested Set to 1 if this tag is nested (i.e. defined within a
class definition).

tag_operators Set to the number of operator functions declared in
this tag.

 10/17/04 – 84 – CodeCheck

tag_private Set to the total number of identifiers declared in this
tag that have private access.

tag_protected Set to the total number of identifiers declared in this
tag that have protected access.

tag_public Set to the total number of identifiers declared in this
tag that have public access.

tag_static_fcn Set to the number of static member functions
declared in this class.

tag_static_mem Set to the number of static data members declared
in this class.

tag_template Set to the number of template parameters if this is a
template definition.

tag_tokens Set to the number of tokens in the tag definition.

tag_types Set to the number of typedef names and tag names
defined within this tag.

Associated CodeCheck variables:

lex_invisible Set to 1 when an unscoped tag name refers to a tag
whose definition is nested within another tag defini-
tion. Such a tag name is visible in C and all versions
of C++ prior to 3.0, but is invisible in C++ 3.0.

Associated CodeCheck functions:

char * class_name(void)

When lin_within_class is non-zero (in a C++ class or class member function
definition), this function returns the class name. Note: this will be different
from tag_name() when an enum is currently being defined within a class
definition, or when any tag is locally defined within a class member function.

10/17/04 – 85 – CodeCheck

int mod_class_lines(int index)

This function returns the total number of lines in each named class, struct,
or union defined in the module, indexed by its order within the module. These
lines include lines in definitions of member functions that are outside the class
definition. The index is zero-based: the first tag has index 0 and the number of
classes is given by mod_classes.

char * mod_class_name(int index)

This function returns the name of each named class, struct, or union
defined in the module, indexed by its order within the module. The index is
zero-based: the first tag has index 0 and the number of classes is given by
mod_classes.

int mod_class_tokens(int index)

This function returns the number of tokens in each named class, struct, or
union defined in the module, indexed by its order within the module. Tokens
in definitions of member functions defined outside the class definition are
included in the token count. The index is zero-based: the first tag has index 0
and the number of classes is given by mod_classes.

char * tag_name(void)

Returns the name of the tag that is currently being defined. Note: this will
be different from class_name() when an enum is currently being defined
within a class definition, or when any tag is locally defined within a class
member function.

int tag_baseclass_access(int j)

 This function returns the access specifier type of jth base class of the class
being checked. Use tag_bases to obtain the number of the number of base
class. If the value of augument exceeds the actual number of base class, the
result is undefined. Otherwise, it returns 0 for public base classes, 1 for
protected base classes and 2 for private base classes.

int tag_baseclass_kind(int j)

 This function returns the kind of jth base class of the class being checked.
Use tag_bases to obtain the number of the number of base class. If the value of

 10/17/04 – 86 – CodeCheck

augument exceeds the actual number of base class, the result is undefined.
Otherwise, the returned value has same meaning as the value of tag_kind.

char *tag_baseclass_name(int j)

This function returns the name of jth base class of the class being checked.
Use tag_bases to obtain the number of the number of base class. If the value of
augument exceeds the actual number of base class. 0 is returned as result.

int tag_components(int kind, int access)

Returns the number of tag components of the specified kind and access.
The possible values of kind and access are:

kind access
0: constants 0: any
1: members 1: public only
2: functions 2: protected only
3: types 3: private only
4: base classes

10/17/04 – 87 – CodeCheck

Chapter 4: CodeCheck Functions

CodeCheck has many useful intrinsic functions, listed alphabetically
below. The type char* appears in a parameter list when the argument can be
either a string literal or a CodeCheck function that returns a string. Unless
otherwise stated, these functions cannot be used as rule triggers.

CodeCheck has a variety of useful intrinsic functions, as described here
with C prototypes. These CodeCheck functions are grouped here by category.
For an alphabetical listing, consul the index under the heading “function”.

Details of the special storage class statistic, which is used by all of Code-
Check’s statistical functions, are covered in section 2.6.4.

The type char* appears in a parameter list when the argument can be ei-
ther a string literal or a CodeCheck function that returns a string.

4.1 General Functions

void advise (int on_off)

Enable and/or Disable CodeCheck Internal Warning Messages from
Console Output Stream.

int exec(char * program, char * arg1, char * arg2, ...)

This function executes an operating system shell command. First the shell
command is constructed by concatenating all the arguments together,
separated by spaces. The resulting command string is then executed by the
shell by means of a call to the ANSI standard system() function.

void exit(int n)

This function causes an immediate exit from CodeCheck, returning the er-
ror number n to the operating system.

 10/17/04 – 88 – CodeCheck

void fatal(int n, char * message)

This function prints an error number and message to stderr and then exits
CodeCheck, returning the error number n to the operating system.

char * fcn_name(void)

This function returns the name of the function that is currently being
checked.

char * file_name(void)

This function returns the name of the file that is currently being checked.
See also: mod_name(), prj_name().

void force_include(char *header_name, int header_type, int
add_or_del)

Function force_include acts similar to the command option /FI of
MSVC++ which force’s a specified header file to be included at the beginning
of a module when an explicit #include directive is used. Header_name
specifies the name of the file to be included. Header_type specifies the file
should be included as user header file or system header file. Add_or_del
decides if the file should be added to or removed from the list of files to be
included in this way, remove the file from list if this parameter has value 0,
otherwise add file to the list.

This function decides if the file name should stay in the candidate list. At
the beginning of a module, CodeCheck will go through the file list and include
them. Files can be added to or removed from the file list any time. However,
the effect only shows at the beginning of next module.

int included(char * name)

Returns 1 if the argument is the name of a header file that has been fully
included in the current module.

10/17/04 – 89 – CodeCheck

char * header_name(void)

When a header file is about to be opened with the #include directive, this
function returns the filename. It may be used as a trigger in a CodeCheck
rule.

char * header_path(void)

When a header file is about to be opened with the #include directive, this
function returns the pathname to the directory in which the header was found.
If the header path is the current directory, then header_path() returns zero. It
may be used as a trigger in a CodeCheck rule.

char * line(void)

This function returns the current input line as a null-delimited string. This
string does not end with a newline character.

char * mod_name(void)

This function returns the name of the module that is currently being
checked. A “module” is a C source file and all of its header files. Its name is the
name of the first source file in the module. See also: file_name(), prj_name().

int option(char c)

This function returns 1 if the command line option specified by c is in effect
(i.e. has been specified by the user), otherwise it returns 0.

void remove_path(); (void)

This function will make a path that was set for searching of included
header files invalid. Only the least recent set path is removed from the list.
The path can only be the one set by function call set_str_option('I', ...). If there
is no path left in the including path list, this function has no effect.

char * prj_name(void)

This function returns the name of the project that is currently being
checked, i.e. the name of the .ccp file that identifies the component modules of a
project to CodeCheck. If there is no project file, then this function returns the

 10/17/04 – 90 – CodeCheck

name of the first source file in the command-line. See also: mod_name(),
file_name().

void set_header_optS(char *header_name, int header_type, int
check_option, int pass_along)

Normally, whether rules are to be applied to system header files is
controlled by command option –S. In the middle of the process, it is possible to
change option –S by calling function set_option(‘S’, option) within rules.
However, it is very difficult to change the option for a specific header file to be
included.

This function allows option -S to be set to a different value just for specified
header file. The function takes 4 parameters.

header_name, A string that specifies name of the header file this function
is to be called upon, it must have the same format as the
actual header file name used in #include directive,
character by character.

header_type Set to 1 if the header file is a user header file, i.e. included
within a pair of double quotes. 2 if the header file is a
system header file, i.e. included within pair of angle
brackets.

check_option This takes the same value as command option –S, it must
be 0,1,2 and 3.

pass_along If this option has value 0, the effect of option –S set for this
file will not be passed along into the header files included
directly or indirectly within this header file. In the case of
a non-zero argument the option –S set for this header file
will be effective to the header files included by the calling
header file directly or indirectly unless the nested header
files set their own option –S by calling this function.

void set_option(char c, int n)

This function assigns the value n to the command-line option specified by c.
For example, when set_option('B',1) is executed by CodeCheck, all succeeding
rules are evaluated as if the user had specified the -B option on the command-
line that invoked CodeCheck. The –K option cannot be changed with this
function — it must be set on the command-line.

10/17/04 – 91 – CodeCheck

void set_str_option(char c, char * name)

This function assigns the string name to the command-line option specified
by c. For example, when set_str_option('I',"/new/hdrs") is executed by
CodeCheck, all succeeding rules are evaluated as if the user had specified the
–I/new/hdrs option on the command-line that invoked CodeCheck.

char * str_option(char c)

This function returns the string value of the command-line option specified
by c. For example, when str_option('L') will return the name of the listing file,
as it was specified in the command-line with option –L. If the option is not in
the command-line, then str_option will return an empty string.

int test_needed(char * name, ...)

This function is to be used only as a trigger in a CodeCheck rule. It is de-
signed to detect the circumstance in which a function (for example malloc) is
called but its return value is not tested (for example, compared to NULL). The
function test_needed returns 1 if a function with a specified name is called and
either: (a) the current expression is not within an if- or while-condition, or (b)
the next statement is not an if- or switch-statement. The argument list for may
be a list of function names. The name of the triggering function may be
obtained with prev_token().

char * time_stamp(void)

This function may be used for time-stamping CodeCheck reports. It returns
a time-and-date string.

4.2 Lexical Functions

int find_root(char * symbol)

Find root base type of name symbol within current local scope. Useful
for advanced symbol table lookup algorithms. Can be used to determine if a
scope-name is valid. See check.cch for values returned, zero is returned if
symbol unknown.

int find_scoped_root(char *scope-name, char * symbol-name).

 10/17/04 – 92 – CodeCheck

Find root of symbol using an explicit scope name. Very useful for testing
the presence of members within named classes. Returns zero if symbol not
found within explicit scope.

int identifier(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever an identifier (a variable or function name) has
been encountered that matches the given string. See also: keyword(), macro(),
token(), prev_token().

void ignore(char * name, ...)

This function causes the CodeCheck lexical analyzer to ignore any
identifier or keyword that matches one of the argument names. Every
argument must be a string.

int keyword(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever a keyword has been encountered that matches the
given string. See also identifier(), token(), prev_token(), macro().

char next_char(void)

This function returns the lexical analyzer’s lookahead character: the char-
acter in the CodeCheck input stream that immediately follows the current
token. This function may not be used as a rule trigger.

char * next_token(void)

Returns string pointer to look-ahead token in source stream from current
position. Return value may be NULL near end of line. Used with prev_token(),
token(), and next_char().

int prefix(char * str)

This function returns 1 if the identifier currently being defined begins the
letters in str, otherwise 0. Each subsequent call to prefix within the same
rule will start looking for the specified prefix immediately after the last
successfully recognized prefix. Thus prefix can be used to parse sequences of
prefixes, from left to right. See also root() and suffix().

10/17/04 – 93 – CodeCheck

char * prev_token(void)

This function returns the previous token that has being parsed by
CodeCheck. The token is in string form. See also keyword(), identifier(),
macro(), and token().

void skip_nonansi_indent(char c);

This function will cause CodeCheck to skip indentifiers that start with non-
ansi characters, e.g. ‘@’, ‘$’, or ‘`’. The value of the parameter can only be one of
the previously mentioned characters, all other values will have no effect.

char * root(void)

Returns the root of an identifier currently being defined after application of
either of the functions prefix and/or suffix. For example, after calling
prefix("foo_") on the identifier foo_bar, the function root() will return the string
"bar".

char * stm_unused_name(int k)

When there are one or more unused variables in a block, then this function
returns the name of the each unused variable, for 0 = k < stm_unused.

int suffix(char * str)

This function returns 1 if the identifier currently being defined ends with
the letters in str, otherwise 0. Each subsequent call to suffix within the same
rule will start looking for the specified suffix before the last successfully
recognized suffix. Thus suffix can be used to parse sequences of suffixes, from
right to left. See also prefix() and root().

char * token(void)

This function returns the current token that has being parsed by
CodeCheck. The token is in string form. See also keyword(), identifier(), and
macro().

 10/17/04 – 94 – CodeCheck

4.3 Preprocessor Functions

char * conflict_file(void)

When pp_macro_conflict is triggered (when a macro definition conflicts
with an earlier definition), this function returns the name of the file for the
earlier definition. The line number is given by the variable conflict_line.

void define(char * name, char * body)

This function defines a macro with the specified name and body, just as
though the definition had appeared in the source file. The macro may not have
any arguments.

int macro(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns the value 1 whenever a macro with the given name is about to be ex-
panded. See also: keyword(), identifier(), token(), prev_token().

int macro_defined(char *name)

This function inquires if the macro with the specified name has been
defined at the point where it triggers the rule containing the call to this
function. If the macro has been defined, the function returns 1, otherwise 0. Do
not use this function in the rule triggered by prj_begin because at that time
the macros have not been defined yet. Lastly, this function is not for the use as
a trigger.

int no_undef(char * identifier)

This function returns 1 if the specified identifier has not been previously
#undefined in the source file. It may not be used as a trigger in a CodeCheck
rule.

char * op_macro(void)

When a macro function with arguments is about to be expanded, (i.e. when
op_macro_call is triggered), this function returns the name of the macro func-

10/17/04 – 95 – CodeCheck

tion that is to be expanded. Important: this function only applies to macros
with arguments.

void pp_error_severity(int s)

This function controls how to deal with the preprocessor directive #error.
Normally, CodeCheck will quit execution after giving a fatal error message
with the string following #error once an #error directive is encountered. This
is the way a majority of C/C++ compilers behave. However, there are some
IBM C/C++ compilers that allow users to use this directive just for displaying
certain ‘error’ messages and continue normally. To make CodeCheck allow
checking to continue on #error directives, call this function with INFO_PP as
argument. To make CodeCheck treat #error directives as fatal errors, call this
function with ERROR_PP as an argument. INFO_PP and ERROR_PP are
defined in file check.cch. By default, CodeCheck acts like pp_error_severity(
PP_ERROR) has been called.

void pp_if_search(int)

 Enable GNU-GCC #if (types) pre-processor method. Open-System
embedded compiler support. GNU-GCC allows #if test on actual types in
addition to simple macro testing. Default for this feature is off [zero-value], on [
nonzero-value]

char * pp_name(void)

When a macro is defined, this function returns the name of the macro.

int pragma(char * name)

This function is designed to be used as a trigger in a CodeCheck rule. It re-
turns 1 whenever a pragma of the specified name is found.

void undefine(char * name)

This function undefines the macro with the specified name.

4.4 Declarator Functions

 10/17/04 – 96 – CodeCheck

char * conflict_file(void)

When dcl_conflict is triggered (when a declaration conflicts with an earlier
declaration), this function returns the name of the file for the earlier decla-
ration. The line number is given by the variable conflict_line.

char * dcl_base_name(void)

This function returns the name of the base type of the current declarator. If
the base type is a typedef name then the typedef name is returned. If the base
type is an enum, union, struct, or class, then the tag name is returned.

int dcl_level(int level)

Set to an integer which identifies the kind of the specified level (function re-
turning…, reference to…, pointer to…, or array of…) for the current declarator.
The number of levels for the current declarator is given by dcl_levels, which is
zero for simple variables. The kinds are defined as manifest constants in the
CodeCheck header file check.cch. These constants are:

#define SIMPLE 0
#define FUNCTION 1
#define REFERENCE 2
#define POINTER 3
#define ARRAY 4

int dcl_level_flags(int level)

Set to an integer which identifies all of the type qualifiers (e.g. const) of the
specified level (pointer to…, array of…, function returning…, or reference to…)
of the current declarator. The number of levels for the current declarator is
given by dcl_levels, which is zero for simple variables. The last level always
refers to the base type of the declarator. The level flags are defined as manifest
constants in the CodeCheck header file check.cch. These constants and an
example are given in Section 3.2.

char * dcl_name(void)

If CodeCheck is scanning a declarator, then this function returns the name
of the current declarator, otherwise 0.

10/17/04 – 97 – CodeCheck

char *dcl_scope_name(void)

This function returns the class scope name right before the declarator. If
the declarator is not scoped, the function returns 0.

void new_type(char * name, int type)

This function informs CodeCheck of the existence of a nonstandard
keyword for a base type. The first argument for new_type() should be the new
keyword itself, in quotes. The second argument should be any of the possible
values of dcl_base (which are defined as manifest constants in the standard
CodeCheck header check.cch) except DEFINED_TYPE. If the value is one of
these:

#define EXTRA_INT_TYPE 6 // e.g. Macintosh comp type
#define EXTRA_UINT_TYPE 11
#define EXTRA_FLOAT_TYPE 15 // e.g. Macintosh extended type
#define EXTRA_PTR_TYPE 21 // e.g. Microsoft _segment type

then CodeCheck will treat the new keyword as a new unique base type. If it is
any other value then the keyword will be considered a synonym for the
specified C type. Consult check.cch for the complete list of base types.

4.5 C++ Class Functions

char * class_name(void)

When lin_within_class is non-zero (in a C++ class or class member function
definition), this function returns the class name.

int mod_class_lines(int index)

This function returns the total number of lines in each named class, struct,
or union defined in the module, indexed by its order within the module. These
lines include lines in definitions of member functions that are outside the class
definition. The index is zero-based: the first tag has index 0 and the number of
classes is given by mod_classes.

char * mod_class_name(int index)

This function returns the name of each named class, struct, or union
defined in the module, indexed by its order within the module. The index is

 10/17/04 – 98 – CodeCheck

zero-based: the first tag has index 0 and the number of classes is given by
mod_classes.

int mod_class_tokens(int index)

This function returns the number of tokens in each named class, struct, or
union defined in the module, indexed by its order within the module. Tokens
in definitions of member functions defined outside the class definition are
included in the token count. The index is zero-based: the first tag has index 0
and the number of classes is given by mod_classes.

int tag_baseclass_access(int j)

This function returns the access specifier type of jth base class of the class
being checked. Use tag_bases to obtain the number of the number of base
class. If the value of augument exceeds the actual number of base class, the
result is undefined. Otherwise, it returns 0 for public base classes, 1 for
protected base classes and 2 for private base classes.

int tag_baseclass_kind(int j)

This function returns the kind of jth base class of the class being checked.
Use tag_bases to obtain the number of the number of base class. If the value of
augument exceeds the actual number of base class, the result is undefined.
Otherwise, the returned value has same meaning as the value of tag_kind.

char *tag_baseclass_name(int j)

This function returns the name of jth base class of the class being checked.
Use tag_bases to obtain the number of the number of base class. If the value of
augument exceeds the actual number of base class. 0 is returned as result.

char * tag_name(void)

Returns the name of the tag that is currently being defined. Note: this will
be different from class_name() when an enum is currently being defined
within a class definition, or when any tag is locally defined within a class
member function.

10/17/04 – 99 – CodeCheck

int tag_components(int kind, int access)

Returns the number of tag components of the specified kind and access.
The possible values of kind and access are:

kind access
0: constants 0: any
1: members 1: public only
2: functions 2: protected only
3: types 3: private only
4: base classes

4.6 Operator Functions

int op_base(int j)

When an operator is executed, this function returns the base type of the jth

operand, using the same values as dcl_base (section 3.2).

char * op_base_name(int j)

If the base type of the jth operand of an executable operator is a tag (enum,
union, struct, or class) or typedef name, then this function returns the tag or
typedef name as a character string.

int op_bitfield(int j)

Returns 1 if the base type of the jth operand of an executable operator is a
bitfield, otherwise zero.

char * op_function(void)

When op_open_funargs, op_close_funargs, or op_call is triggered, this func-
tion returns the name of the function that is to be declared or called. When an
expression has to be evaluated in order to find which function to call, e.g.
through a function pointer, then this function returns an empty string.

 10/17/04 – 100 – CodeCheck

int op_level(int j, int k)

When an operator is executed, this function returns the kind of the kth level
of the jth operand, using the same values as dcl_level(k) (section 3.2).

int op_level_flags(int j, int k)

When an operator is executed, this function returns the flags for the kth

level of the jth operand, using the same values as dcl_level_flags(k) (section
3.2).

int op_levels(int j)

When an operator is executed, this function returns the number of levels of
the jth operand, using the same values as dcl_levels (section 3.2).

char * op_macro(void)

This function returns the name of the macro function as it is about to be ex-
panded. It is triggered at the same time as op_macro_call. Note that this func-
tion only applies to macros with arguments. See also op_function().

int op_parened_operand(int j)

When an operator is executed, this function checks if the jth operand is an
expression within a pair of parenthesis. If yes, function returns 1, otherwise 0.

void skip_macro_ops(int b)

This function gives a way to control whether op_ variables are effective on
operators from macro expansion. If operators from a macro expansion need to
be counted, call this function with a non-zero integer as argument. Otherwise,
pass 0 as argument. CodeCheck acts like skip_macro_ops (1) has been called
by default.

By default, op_ variables will not be effective on the operators derived from
macro expansion. This function provides a way let user control if op_ variables
should be effective on operators derived from macro expansion. When value 0
is passed into function as actual argument, CodeCheck will not ignore the
operators of this kind while setting up op_ variables. When a non-zero value is
passed as actual argument, op_ variables will not be set for the operators
derived from macro expansion.

10/17/04 – 101 – CodeCheck

4.7 Character Functions

int isalpha(int ch)

Returns 1 if ch is an alphabetic character. Precisely the same as the ANSI
function of the same name.

int isdigit(int ch)

Returns 1 if ch is a decimal digit. Precisely the same as the ANSI function
of the same name.

int islower(int ch)

Returns 1 if ch is a lower case letter. Precisely the same as the ANSI
function of the same name.

int isupper(int ch)

Returns 1 if ch is an upper case letter. Precisely the same as the ANSI
function of the same name.

int tolower(int ch)

If ch is an upper case letter, then this function returns the lower case
version of ch, otherwise it returns ch. Precisely the same as the ANSI function
of the same name.

int toupper(int ch)

If ch is an upper case letter, then this function returns the lower case
version of ch, otherwise it returns ch. Precisely the same as the ANSI function
of the same name.

4.8 String Functions

 10/17/04 – 102 – CodeCheck

int all_digit(char * s)

This function returns 1 if string pointed to by s consists only digits ('0'-'9').
Otherwise it returns 0.

int all_lower(char * s)

This function returns 1 if string pointed to by s consists only lower case
letters ('a'-'z'). Otherwise it returns 0.

int all_upper(char * s)

 This function returns 1 if string pointed to by s consists only upper case
letters ('A'-'Z'). Otherwise it returns 0.

float atof(char *)

 This function converts the initial portion of a string to a float. It is
identical to ANSI function atof() except that a fatal error is generated if its
argument is null pointer.

int aoti(char *)

 This function converts the initial portion of a string to an integer. It is
identical to ANSI function atoi() except that a fatal error is generated if its
argument is null pointer.

char * strcat(char * s1, char * s2)

 This function is identical to ANSI function strcpy(). It appends a copy of
the string pointed to by s2 (including the terminating null character) to the
end of the string pointed by s1. The initial character of s2 overwrites the null
character at the end of s1. It returns the value of s1. If either of its arguments
are null pointers, a fatal error is generated.

char * strchr(char * s, int c)

This function is identical to ANSI function strchr(), it locates the first
occurrence of c (converted to a char) in the string pointed to by s. The

10/17/04 – 103 – CodeCheck

terminating null character is considered to be part of the string. It returns a
pointer to the located character or 0 if the character does not exist in the
string. The first argument is a null pointer, a fatal error is generated.

int strcmp(char * s1, char * s2)

This function is identical to ANSI function strcmp(), it compares the string
pointed to by s1 to string pointed to by s2. It returns an integer greater than,
equal to, or less than 0, accordingly as the string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2. If either of arguments
are null pointers, a fatal error is generated.

char * strcpy(char * s1, char * s2)

 This is identical to ANSI function strcpy(), it copies the string pointed to
by s2(including the terminating null character) into the array pointed to by
s1. It returns the value of s1. If either of the arguments are null pointers, a
fatal error is generated.

int strcspn(char * s1, char * s2)

This function is identical to ANSI function strcspn(), it computes the length
of the maximum initial segment of the string pointed by s1 which consists
entirely of characters not from string pointed to by s2. It returns the length of
the segment. If either of arguments are null pointers, a fatal error is
generated.

int strequiv(char * s1, char *s2)

This function return 1 if the two argument string pointed to by s1 and s2
are the same (not case sensitive). If they differ, or if either pointer is null,
then strequiv returns 0.

int strlen(char *s)

 This function is identical to ANSI function strlen(). It computes the
length of the string pointed to by s. It returns a number of characters that
precedes the terminating null character. If its argument is a null pointer, a
fatal error is generated.

 10/17/04 – 104 – CodeCheck

char * strncat(char *s1, char * s2, int n)

This function is identical to ANSI function strncat(). It appends no more
than n characters (a null character and characters that follow it are not
appended) from array pointed to by s2 to the end of the string pointed to by s1.
The initial character of s2 overwrites the null character at the end of s1. A
terminating null character is always appended to the result. It returns the
value of s1. If either of its first two arguments are null pointers, a fatal error is
generated.

int strncmp(char * s1, char * s2, int n)

 This function is identical to ANSI function strncmp(), it compares not
more than n characters (characters that follow a null character are not
compared) from the array pointed to by s1 to array pointed to by s2. It returns
an integer greater than, equal to , or less than 0, accordingly as the possibly
null-terminated array pointed to by s1 is greater than, equal to, or less than
the possibly null-terminated array pointed to by s2. If either of its first two
arguments are null pointers, a fatal error is generated.

char * strncpy(char * s1, char * s2, int n)

 This function is identical to ANSI function strncpy(), it copies not more
than n characters (characters that follow a null character are not copied) from
the array pointed to by s2 to array pointed to by s1. It returns the value of s1.
If either of its first two arguments are null pointers, a fatal error is generated.

char * strpbrk(char *s1, char * s2)

 This function is identical to ANSI function strpbrk(). It locates the first
occurrence in the string pointed to by s1 of any character from the string
pointed to by s2. It returns a pointer to the character, or 0 if no character from
s2 exists in s1. If either of its arguments are null pointers, a fatal error is
generated.

char * strrchr(char * s, int c)

This function is identical to ANSI function strrchr(). It locates the last
occurrence of c (converted to a char) in the string pointed by s. The
terminating null character is considered to be part of the string. It returns a
pointer to the character, or 0 if c does not exist in the string. If the argument
string is null pointer, a fatal error is generated.

10/17/04 – 105 – CodeCheck

int strspn(char * s1, char * s2)

This function is identical to ANSI function strspn(). It computes the length
of the maximum initial segment of the string pointed to by s1, which consists
entirely of character from the string pointed to by s2. It returns the length of
the segment. If either of its arguments are null pointers, a fatal error is
generated.

char * strstr(char * s1, char * s2)

 This function is identical to ANSI function strstr(). It locates the first
occurrence in the string pointed to by s1 of the sequence of characters
(excluding the terminating null character) in the string pointed to by s2. It
returns a pointer to the located string or 0 if the string is not found. If s2 points
to a string with zero length, it returns s1. If either of its arguments are null
pointers, a fatal error is generated.

4.9 Mathematical Functions

float log2(float)

This function returns the logarithm (base 2) of its argument.

float pow(float x, float y)

This function returns x raised to the power y.

float sqrt(float)

This function returns the square root of its argument.

4.10 Statistical Functions

 10/17/04 – 106 – CodeCheck

float corr(statistic x, statistic y)

This function returns the correlation of its two argument variables. The ar-
gument variables must have the same number of cases. Pearson’s product-mo-
ment correlation is returned.

void histogram(statistic x, int min, int max,
int bins)

This function prints a histogram of its argument variable on stdout, using
bins equal-width cells for all values between min and max. Every cell of the
histogram counts the number of values observed that are greater than or
equal to its lower bound, and less than its upper bound. If the last three pa-
rameters (min, max, bins) are zero, CodeCheck will use appropriate values
based on the characteristics of the given statistic. Each cell of the histogram is
labeled with its lower bound.

float maximum(statistic x)

This function returns the maximum (largest observed value) of its statisti-
cal argument variable.

float mean(statistic x)

This function returns the mean (arithmetic average) of its statistical argu-
ment variable.

float median(statistic x)

This function returns the median (i.e. the 50th percentile) of its statistical
argument variable.

float minimum(statistic x)

This function returns the minimum (smallest observed value) of its statis-
tical argument variable.

float mode(statistic x)

This function returns the mode (most frequently observed value) of its
statistical argument variable.

10/17/04 – 107 – CodeCheck

int ncases(statistic x)

This function returns the number of cases recorded for its statistical argu-
ment variable.

float quantile(statistic x, int k, int n)

This function returns the kth n-tile of its statistical argument variable. To
give two examples, quantile(x,95,100) returns the 95th percentile of x, while
quantile(y,3,4) returns the third quartile of y.

void reset(statistic x)

This function resets its statistical argument variable. All recorded cases are
erased, and the case count is reset to zero.

float stdev(statistic x)

This function returns the standard deviation of its statistical argument
variable.

float variance(statistic x)

This function returns the variance of its statistical argument variable.

4.11 Input/Output Functions

int eprintf(char * format, ...)

 This function behaves exactly as function printf() except that the output
is on stderr instead of stdout.

int fclose(FILE * stream)

This function is identical to the ANSI standard fclose function. Do not
include the header file stdio.h in the rule file — CodeCheck uses its own
internal declarations for the standard IO functions.

 10/17/04 – 108 – CodeCheck

FILE * fopen(char * filename)

This function is identical to the ANSI standard fopen function. Do not in-
clude the header file stdio.h in the rule file — CodeCheck uses its own internal
declarations for the standard IO functions.

int fprintf(FILE * stream, char * format, ...)

This function is similar to the ANSI standard fprintf function. Do not in-
clude the header file stdio.h in the rule file — CodeCheck uses its own internal
declarations for the standard IO functions.

int fscanf(FILE * stream, char * format, ...)

This function is similar to the ANSI standard fscanf function. The argu-
ment variables may be of type int, float, char, char[], or char*. All the usual
formatting conventions are supported. Do not include the header file stdio.h in
the rule file — CodeCheck uses its own internal declarations for the standard
IO functions.

int printf(char * format, ...)

This function is similar to the ANSI standard printf function. The argu-
ment variables may be of type int, float, char, or char*. All the usual format-
ting conventions are supported except the asterisk notation and the %n format.
Do not include the header file stdio.h in the rule file — CodeCheck uses its
own internal declarations for the standard IO functions.

int scanf(char * format, ...)

This function is similar to the ANSI standard scanf function. The argu-
ment variables may be of type int, float, char, char[], or char*. All the usual
formatting conventions are supported. Do not include the header file stdio.h in
the rule file — CodeCheck uses its own internal declarations for the standard
IO functions.

int sprintf(char * string, char * format, ...)

 This function is similar to the ANSI stardard sprintf function. The
argument variables may be of type int, float, char, or char*. All the usual
formatting conventions are supported except the asterisk notion and the %n

10/17/04 – 109 – CodeCheck

format. Do not include the header file <stdio.h> in the rule file -- CodeCheck
uses its own internal declarations for the standard IO functions.

int sscanf(char * string, char * format ...)

 This function is similar to the ANSI standard sscanf function. The
argument variables may be of type int, float, char or char*. All the usual
formatting conventions are supported. Do not include the header file stdio.h in
the rule file -- CodeCheck uses its own internal declaration for the standard IO
functions.

void warn(int n, char * format, ...)

This function prints an error number and formatted message to the stderr
stream, together with the filename and line number of the C source which trig-
gered the message. If a listing file is open, then the warning message is echoed
in the listing file with a marker indicating the position of the error. The warn
function is modeled after the C function printf. The argument variables that
follow the format string may be of type int, float, char, or char*. All formatting
conventions are supported except the asterisk notation and the %n format.

 10/17/04 – 110 – CodeCheck

Warning Messages

Warning messages from CodeCheck may originate from the evaluation of
rules in a rule file, or they may originate from CodeCheck itself. In the former
case the error number will carry the prefix W, while in the latter case the
prefix is C. This is the only way to distinguish between these two kinds of
warnings.

It is frequently extremely helpful to view warning messages in their
complete context. To do this, use the –L command-line option. CodeCheck will
then create a listing file, named check.lst. In this listing file every line is
shown with its line number and error messages, with a marker showing the
exact token that triggered each error message. Lines that were suppressed by
the preprocessor (through #if conditionals) are shown with a hyphen
substituted for the line number. If an error occurred within the expansion of a
long or complicated macro, then use the –M option to show all macro
expansions in the listing file. If an error occurred within a header file, then use
the –H option to show all headers fully listed in the listing file.

Warnings Issued by Rules

Warning messages that originate from rule evaluation were written by the
author of the rules, and are generated by the CodeCheck warn() function.
These warning messages have the following format:

filename(line-number): Warning Wxxxx: text of message

Macintosh version only: the second line of the message gives the complete
pathname for the file in which the problem was encountered, and the line
number that was being processed at the time the error was found, in the
standard MPW format for error messages.

Error Warning Functions

10/17/04 – 111 – CodeCheck

User programmable Warning functions.

char * err_message()

Returns the message body of warning message numbered as
CXXXX.

int err_syntax

Set to an integer when CodeCheck encounters a syntax error
which is CXXXX. The value of the integer is 1 greater than value XXXX.

fatal(n,str)

Issue fatal error number with message string. CodeCheck will exit(-1)
when this function is called.

int warn(int num, char *control, char * message, …)

Generates a warning message. First argument unique error number,
following arguments similar to stdlib function printf(). This is an information
function only, processing will continue.

 10/17/04 – 112 – CodeCheck

Warnings Issued by CodeCheck

CodeCheck’s own warning messages are informational only; they deal with
situations that appear to be syntactic or semantic errors. These warning
messages have a similar format (the only difference being the prefix on the
error number).

filename(line-number): Warning Cxxxx: text of message

After CodeCheck issues a warning error message, it attempts to proceed with
further checking. Like any compiler, CodeCheck may become confused by a
syntax error and issue a variety of nonsensical messages until finally
encountering a fatal error condition. In this circumstance the only meaningful
error message is the first.

C0000 Syntax Error.

A minor syntax error has been encountered, from which CodeCheck
can usually make a graceful recovery.

CodeCheck may provide more information in an additional warning
message, and will attempt to continue checking the source file.

C0001 Premature end of macro argument list.

There were fewer actual arguments in a macro call than there were
formal parameters in the macro definition.

C0002 Missing macro argument.

An actual argument in a macro call was missing.

C0003 Too many macro arguments.

There were more actual arguments in a macro call than there were
formal parameters in the macro definition.

C0004 Too many type modifiers.

The number of type modifiers (pointer to, array of, or function) in a
declaration exceeded the maximum that CodeCheck can record.

The declaration should be simplified.

10/17/04 – 113 – CodeCheck

C0005 Empty #ifdef

An #ifdef or #ifndef directive was found without an argument.

CodeCheck assumes the value TRUE for the test.

C0006 Previous semicolon missing?

The syntax error on the indicated line may be due to a missing semi-
colon in a previous statement.

CodeCheck will attempt to continue checking, but all code between
the missing semicolon and the marked semicolon will not be checked.

C0007 Missing right parenthesis.

CodeCheck expected a right parenthesis at the position marked in
the listing, but did not find one.

CodeCheck will attempt to continue checking by pretending that
there was a right parenthesis just before the marked position.

C0008 Macro defined differently in file <filename>

The differences between this macro definition and the definition in
the given file are not trivial.

This is at best very poor style. All macro definitions should agree
within a project.

C0009 Not a legal constant expression.

Standard C places many restrictions on what can appear in a con-
stant expression. This expression violates at least one such restric-
tion.

CodeCheck will attempt to continue checking by pretending that the
constant expression was in fact legal.

C0010 String literal too long for CodeCheck.

The length of a string literal constant exceeded the capacity of Code-
Check’s internal buffer. Note that ANSI C compilers are only re-
quired to handle string literals of length 509.

CodeCheck will truncate the string for purposes of further checking.
This will limit its ability to find macros embedded in the string.

 10/17/04 – 114 – CodeCheck

C0011 Type or storage class specifier required.

A declarator was found without a type or storage class specifier. This
grammatical construction is obsolete, and should not be used.

C0012 Undeclared identifier <name>.

The specified identifier had not been previously declared.

Check the spelling of the variable. If it is correct, bring this message
to the attention of Abraxas Technical Support.

C0013 Illegal or repeated typedef.

CodeCheck could not make sense of this type definition. Perhaps the
identifier has already been defined as a type.

C0014 Error in member declaration.

A class, struct, or union member declaration has an error, possibly
an undeclared type or illegal declarator.

C0015 Tag redefinition.

This enum, union, struct, or class tag has already been defined
within the current scope.

C0016 <identifier> was declared differently in file <filename>.

A discrepancy was found between the current declaration and a pre-
vious declaration for the same identifier.

C0017 ANSI C prohibits type specifiers with typedef names.

The ANSI standard explicitly prohibits using type specifiers and
typedef names within the same declaration.

CodeCheck will attempt to make sense out of the declaration, but
agreement with nonstandard compilers cannot be guaranteed.

C0018 End-of-line found in a literal string or char.

A literal string or character constant was not properly terminated.

C0019 Rule triggers cannot have else-clauses.

The top-level if-statement in a CodeCheck rule has an else-clause.
This is not permitted in CodeCheck rules, because the “else” condi-

10/17/04 – 115 – CodeCheck

tion describes an ill-defined event (how often does an event not oc-
cur?).

CodeCheck will ignore the else-clause. Rewrite the rule, if possible.

C0020 Error in declaration.

The indicated declaration contains a syntax error. One common rea-
son: an undefined typedef name.

CodeCheck will ignore the troublesome declaration, and will attempt
to continue parsing.

C0021 Floating-point constants found in a constant expressions.

A floating-point constant (a number with a decimal point or the F
suffix) was encountered in a preprocessor constant expression.

CodeCheck will convert the constant to a long and continue. The re-
sult may not be what the programmer intended. Note: the ANSI C
standard forbids floating-point constants in this context.

C0022 Tag type conflict for aggregate <tagname> in file
<filename>.

An aggregated data structure (union, struct, or class) with the same
tag name but a different tag type was defined earlier.

C0023 Could not open header file <filename>.

CodeCheck could not open the specified file.

Verify that the file exists, that it is not already open, and that it is in
a directory known to CodeCheck (the –I command-line option can be
used to specify directory paths).

C0024 Labels must be within function definitions.

A label was found outside any function definition.

C0025 Invalid argument for CodeCheck math function.

An inappropriate argument was passed to a mathematical function
within a CodeCheck rule. For example, the sqrt function may have
received a negative argument.

 10/17/04 – 116 – CodeCheck

C0026 This function ought to be in the rule trigger.

Certain CodeCheck functions, e.g. test_needed, are designed to be
used in the trigger of a rule. When used outside the trigger these
functions may not work as intended.

C0027 This CodeCheck function has not been implemented.

(This error message should not occur.)

C0028 Invalid preprocessor constant expression.

A constant expression could not be evaluated by the preprocessor.

CodeCheck attempts to proceed using the part of the expression that
has been evaluated up to this point. If the entire expression is
empty, then CodeCheck assumes a value of zero.

C0029 String, comment, or character literal terminated by end of
file.

An end-of-file marker was unexpectedly encountered while reading a
string, comment, or character literal.

C0030 Divide by zero.

During evaluation of a CodeCheck rule a division by zero was at-
tempted. The result was set to zero.

C0031 This statement must go inside a rule.

During compilation of a rule file, CodeCheck found an executable
statement that was not part of a rule. Every executable statement in
a rule file must be embedded within a rule.

The rule programmer probably intended the statement to be exe-
cuted either (a) once only, at the beginning of a project, or (b) at the
beginning of the scan of each module. If (a) then embed the code
within a rule that is triggered by prj_begin. If (b) then use
mod_begin.

C0032 Nested comment.

A /* … */ comment was found embedded within a /* … */ comment.
This will cause a syntax error unless the –N command-line option is
in effect. Note that embedded comments are not permitted in ANSI
C.

10/17/04 – 117 – CodeCheck

C0033 This trigger may describe an ill-defined event.

The CodeCheck rule compiler has reason to believe that the indi-
cated rule will never be triggered. For example, the trigger event
may be defined as a logical negation, such as:

if (! lin_has_comment)
{ ...

This event is not well defined because the set of all events that are
not lines-with-comments is indeterminate. Rewrite such rules so that
they are triggered by an event that positively will occur, e.g.

if (lin_end)
if (! lin_has_comment)

{ ...

C0034 Illegal parameter declaration.

This function declaration seems to mix old-style and new-style
(prototyped) parameters. It is illegal in ANSI C to mix these styles.

C0035 A reserved keyword may have been used as an identifier.

Some older C compilers permit the use of certain ANSI and C++ re-
served keywords (e.g. const and volatile) as identifiers. This syntax
error may have been caused by such an identifier.

If you are using reserved keywords as identifiers, change them. Not
only will this make CodeCheck happy, it will also greatly improve
the maintainability and portability of your program.

C0036 Function definition expected here.

A function definition was expected but not found.

C0037 Nested class tag1::tag2 cannot be found.

The specified class definition could not be found by CodeCheck.

If the class definition is in fact in the source code, and if your
compiler has no trouble with the source code, then please fax a
Trouble Report Form to Abraxas Technical Support.

C0038 Option <command-line option> not understood.

A command-line option did not make sense.

 10/17/04 – 118 – CodeCheck

Please verify that the option you used is in the correct format. A
brief explanation of all command-line options can be obtained by
invoking CodeCheck with no arguments.

C0039 Bad message.

This return code should never occur.

C0040 Improper call to CodeCheck function new_type().

The function new_type() was used incorrectly in a CodeCheck rule.
The actual text of this warning will specify exactly what was wrong
with the call.

C0041 Do not declare CodeCheck variables with initializers.

An initializer was found in a declaration in a CodeCheck rule file.

Remove the initializer, and set the variable appropriately within a
rule that is triggered by mod_begin.

C0042 CodeCheck was confused by this C++ class initializer.

This message should never occur. Please fax a copy of the code that
caused this message to Abraxas Technical Support.

C0043 Trigraph in character literal: replace ??' with ?\?'.

Two question marks followed by a single quote is an ANSI trigraph,
a symbol sequence that is interpreted by ANSI compilers as the
carat ^ symbol (which is not present on some European keyboards).
This trigraph was found within a character literal, implying that it
was not intended to be a trigraph.

Insert a backslash character between the two question marks. This
will prevent syntax errors when your code is parsed by ANSI
compilers, and will not change the meaning of the code under any
compiler.

C0044 Do not use template arguments with a constructor name.

According to the Annotated C++ Reference Manual, page 350, it is
not syntactically correct to use template arguments in the
declaration of a constructor or destructor for a template class.

10/17/04 – 119 – CodeCheck

CodeCheck will ignore the template arguments. The arguments
should be removed, as they will make the template definition
nonportable.

C0045 Member <name> not found within <tag>.

The named member could not be found within the union, struct, or
class.

C0046 Attempt to modify a constant.

An attempt was made either to assign a value to a constant, or to
increment or decrement a constant using the ++ or –– operator.

C0047 Assignment incompatibility.

An assignment could not be compiled because the destination type is
not compatible with the source type.

C0048 Function return type incompatibility.

The type of the value in a return statement is not compatible with
the declared return type of the function.

C0049 Argument <k> incompatible with prototype.

The type of the kth argument in a function call is not compatible with
the declared type of the corresponding formal parameter in the
function prototype currently in scope.

C0050 There is no class to inherit from.

The inherited keyword has been used when there is no class to
inherit from (Symantec THINK C for Macintosh only).

C0051 Template <name> has not yet been declared.

A C++ template name has been used before it is declared. Several
C++ compilers consider this to be legal, but it is very poor
programming style.

 10/17/04 – 120 – CodeCheck

Fatal Error Messages

Fatal error messages from CodeCheck may originate from the evaluation of
rules in a rule file, or they may originate from CodeCheck itself. In the former
case the error number will carry the prefix F, while in the latter case the
prefix is E. This is the only way to distinguish between these two kinds of
warnings.

CodeCheck’s own fatal error messages indicate a very severe problem, one
that prevents CodeCheck from processing your program any further. These
messages have the following format:

filename(lineno): Fatal Error Exxxx: fatal error message

After CodeCheck displays a fatal error message, it terminates without any fur-
ther checking.

E0000 Syntax Error

CodeCheck encountered a syntax irregularity from which it could
not recover. The actual text of the error message may provide some
detail on what was found. If any syntax warnings preceded this fatal
error, then the actual problem may have occurred earlier.

First make sure that your source code really does compile without er-
ror on your C compiler. Second, examine the source code in the lines
preceding the error message for any unusual constructions that may
be peculiar to your compiler. Third, follow the suggestions in the
section entitlted “Trouble-shooting”.

E0001 CodeCheck is out of dynamic memory.

CodeCheck ran out of dynamic memory space. This usually means
that this source file has too many macro definitions, type definitions,
and variable names for CodeCheck to keep track of.

MS-DOS: Are you using the version of CodeCheck that makes use of
your extended memory? If so, then add more extended memory. If
not, then try the extended memory version.

10/17/04 – 121 – CodeCheck

Macintosh: Increase the memory allocated by the system to the
MPW Shell (the amount is found in the “Get Info” box for the Shell).

If all else fails, try using the –Z command-line option to inhibit cross-
module checking. This greatly reduces the demands made by Code-
Check on dynamic memory.

E0002 "filename" or <filename> expected but not found.

An #include preprocessor directive was found without a filename
specified in the proper format.

Make sure that the filename is enclosed in quotes or angle brackets.

E0003 Macro name expected.

A #define preprocessor directive was found without a valid identifier
for the name of the macro.

Make sure that the macro has a name that begins with an
alphabetic character.

E0004 Unexpected end of macro definition.

The end of a macro definition was encountered, without a close
parenthesis for the macro formal parameter list.

Verify that the macro definition is syntactically correct.

E0005 Invalid macro formal parameter.

A formal parameter in a macro definition was not a valid identifier.

Verify that each formal parameter is an alphanumeric string that
starts with an alphabetic character. Formal macro parameters must
not be expressions, and they must not be missing.

E0006 Comma expected in macro argument list.

Two formal parameters in a macro definition were separated by
something other than a comma.

Check the formal parameter list.

E0007 Macro arguments found but not expected.

There were actual arguments in a macro call, but no formal parame-
ters were given in its definition.

 10/17/04 – 122 – CodeCheck

Correct the macro call.

E0008 Too many files.

CodeCheck’s internal array of filenames has overflowed.

Please report this condition to Abraxas Technical Support.

E0009 Multiple #else directives.

More than one #else preprocessor directive was encountered after an
#if, #ifdef, or #ifndef.

Check for improperly balanced #if - #else - #endif directives.

E0010 Dangling #else directive.

An #else preprocessor directive was encountered where none was ex-
pected.

Check for an #else directive that should have been deleted.

E0011 Dangling #endif directive.

An #endif preprocessor directive was encountered where none was
expected.

Check for an #endif directive that should have been deleted.

E0012 Overflow in paste buffer.

The length of tokens being pasted together with the ANSI paste op-
erator (##) has exceeded the maximum permitted by CodeCheck.

Verify that the specified paste operation is correct. If it is, then try
rewriting the code in a simpler fashion.

E0013 Buffer overflow in ungetch.

A CodeCheck internal buffer has overflowed.

Please report this condition to Abraxas Technical Support, with a
copy of the listing file from CodeCheck (if possible).

E0014 Exponent expected but not found.

During processing of a floating-point constant, the letter 'e' or 'E' was
encountered with no following exponent.

10/17/04 – 123 – CodeCheck

Determine the correct exponent and place it after the 'e' or 'E'.

E0015 Not allowed in a CodeCheck rule.

A construction was found within a CodeCheck rule that is valid in C
or C++ but not in CodeCheck rules.

Review the differences between the CodeCheck rule grammar and
the grammar for C. Remember that CodeCheck rules use a restricted
subset of the C language.

E0016 Pseudocode buffer overflow.

An internal CodeCheck buffer overflowed during compilation of a
rule file.

Please report this condition to Abraxas Technical Support, with a
copy of the rule file from CodeCheck (if possible).

E0017 Undeclared identifier <name>.

A CodeCheck variable had not been previously declared.

Check the spelling of the variable. If it is correct, remember that all
CodeCheck variables must be declared.

E0018 Too many triggers for this rule.

An internal CodeCheck buffer overflowed during compilation of a
rule.

Please report this condition to Abraxas Technical Support, with a
copy of the rule (if possible). Try to simplify the rule, using fewer
variables.

E0019 Nesting of if-else statements exceeds maximum.

An internal CodeCheck buffer overflowed during compilation of a
rule.

Please report this condition to Abraxas Technical Support, with a
copy of the rule (if possible). Try to simplify the rule, using fewer if-
statements.

E0020 Duplicate declaration.

Two variables or typedef names have been declared with the same
name, at the same level.

 10/17/04 – 124 – CodeCheck

Check the spelling of both names. If correct, then check for an erro-
neous redeclaration.

E0021 CodeCheck name table overflow.

Too many user-declared CodeCheck variables have been declared in
a rule file.

Please report this condition to Abraxas Technical Support, with a
copy of the rule file (if possible). Try to simplify the rule file, using
fewer user-declared variables.

E0022 NULL format string in warn(), printf(), or fatal().

E0023 CodeCheck integer storage has been exceeded.

Too many integers have been used in a CodeCheck rule file.

Simplify your rules, and contact Abraxas Technical Support.

E0024 CodeCheck float storage has been exceeded.

Too many floating numbers have been used in a CodeCheck rule file.

Simplify your rules, and contact Abraxas Technical Support.

E0025 This type specifier is not allowed in a CodeCheck rule.

E0026 Too many parentheses in declaration.

Too many parentheses were used in the construction of a declarator.

Simplify this declaration.

E0027 Value stack overflow.

The nesting level of a declaration, expression, or statement exceeded
that allowed by CodeCheck.

Please inform Abraxas Technical Support if this condition occurs.

E0028 Underflow of value stack.

This condition should never occur.

E0029 Improper #elif syntax.

Possibly an #else was used instead of an #elif before this line.

10/17/04 – 125 – CodeCheck

Check for proper balancing of #if - #elif - #endif directives.

E0030 Dangling #elif directive.

An #elif was encountered without a prior #if, #ifdef, or #ifndef.

Check for a missing #if directive.

E0031 Invalid constant expression.

An error was found in a constant expression (an expression that
must be evaluated at compile-time, not execution-time).

Check for the use of C operators or functions (e.g. sizeof) that are not
permitted within constant expressions.

E0032 Float type is not allowed in preprocessor arithmetic.

A constant of type float was found in a constant expression.

C does not permit floating arithmetic within constant expressions.

E0033 <identifier> is NOT a statistic!

A non-statistical CodeCheck variable was used within a rule as
though it were a statistic.

Only certain predefined CodeCheck variables are statistics. Non-sta-
tistical predefined variables cannot be placed in the statistic storage
class by the user.

E0034 Too many cases for the statistic <identifier>.

More than 100,000 cases were recorded for a statistical variable.

Please contact Abraxas Technical Support if you require more cases.

E0035 Strings are not allowed here.

A string was used inappropriately within a CodeCheck rule.

E0036 Too many predefined statistic variables!

There is a limit to the number of statistical variables that can be ac-
tive within one rule file.

Try to reduce your usage of statistical variables, or break up the rule
file into several components.

 10/17/04 – 126 – CodeCheck

E0037 printf: unsupported type.

An attempt was made to print a variable of a type not supported by
the CodeCheck printf function.

E0038 Do not modify predefined CodeCheck variables!

An attempt was made to assign a value to a predefined CodeCheck
variable.

E0039 Attempt to reset a non-statistical variable: <identifier>

The reset() function cannot be used on non-statistical variables.

E0040 Not an lvalue!

The expression on the left-hand-side of an assignment operator
within a CodeCheck rule is not valid.

E0041 Do not use ++ or -- on statistical variables!

The pre- and post- increment and decrement operators may not be
used on CodeCheck variables of the statistic storage class.

E0042 Correlation requires equal numbers of cases!

The corr function in a CodeCheck rule was called with two argu-
ments that have unequal numbers of cases.

A correlation between two variables can only be calculated when the
two variables have the same numbers of cases.

E0043 Not a legal declaration.

A declaration was expected. What was found was apparently not a
declaration.

E0044 Invalid stringize operand.

The ANSI stringize operator (#) was applied to an invalid (or null)
operand.

The operand must be a formal parameter of the macro.

E0045 Illegal function declarator.

A function declarator was expected but not found.

10/17/04 – 127 – CodeCheck

E0046 Constant buffer overflow.

This CodeCheck rule file uses more constants than the compiler has
space for.

Please contact Abraxas Technical Support if this happens.

E0047 Input line exceeds buffer length.

An input line for a C source file or a CodeCheck rule file was longer
than 2050 characters.

E0048 Variable <identifier> has not yet been implemented.

The specified variable will be implemented in a later release.

Check with Abraxas Software to see if you have the latest release.

E0049 <type identifier> does not make sense here.

Among the common causes for this error are: (1) a header file con-
taining a necessary type definition was not included, or (2) a needed
type definition is hidden within conditional code. In either case the
usual root cause of the problem is that a macro symbol is undefined.
Possible reasons: (1) the code assumes that the macro symbol will be
defined in the command-line, or (2) the macro symbol is a non-ANSI
symbol that is predefined in your C compiler.

Create a listing file using the –H and –M command-line options, and
search through the listing for the definition of the typedef name that
was involved in the declaration that caused this syntax error. Check
to see whether the definition was suppressed by the preprocessor (it
was suppressed if its line number is a hyphen), or if the definition is
in a header file that was never included.

E0050 Illegal declaration.

This message is usually a side-effect of an earlier syntax warning.

E0051 Internal CodeCheck error.

Please report this message to Abraxas Technical Support.

E0052 Unknown preprocessor directive.

A nonstandard preprocessor directive was encountered that is not
known to CodeCheck. Please send documentation on the meaning of
this directive to Abraxas Technical Support.

 10/17/04 – 128 – CodeCheck

E0053 Missing right curly brace?

The close brace of a function definition was expected here but not
found. If your code looks correct then please fax a Trouble Report
Form to Abraxas Technical Support.

E0054 Too many directories.

Too many full path names were used during project checking (the
default is 64 in CodeCheck version 5).

E0055 CodeCheck aborted by user.

The user hit the control/C key on the keyboard.

E0056 #error directive encountered.

The preprocessor encountered an #error directive, which caused
checking to terminate.

These directives are placed in programs to prevent compilation when
certain necessary conditions are not met. To determine why the oc-
curred, run CodeCheck again with the –H option and study the
listing file (check.lst) that is produced. Usually a macro has the
wrong value, or is not defined when it should be defined. Determine
what the correct value of this macro should be, and define or
undefine it on the command-line with a –D or –U option.

E0057 Allowed in C++ but not in C.

The indicated syntax is legal C++, but not C. Make sure that the
correct –K command-line option has been used for this source code.

E0058 NULL string argument in CodeCheck strcmp function.

One of the arguments to strcmp was NULL.

E0059 Paste operator (##) is the first token.

The ANSI preprocessor paste operator (##) cannot be the first token
in a macro expansion. This is a syntax error in a preprocessor macro
definition or macro expansion.

10/17/04 – 129 – CodeCheck

E0060 CodeCheck will not write to any file with extension
<extension>.

As an elementary security feature, the CodeCheck fopen() function
will refuse to open a file for writing if its extension is one of the
following: .c, .cp, .cpp, .h, .hpp.

 10/17/04 – 130 – CodeCheck

Limits and Assumptions

Like all compilers, CodeCheck has certain built-in limits and assumptions.
These are summarized below. Note that some operating systems (notably MS-
DOS) impose severe memory restrictions not reflected in the summary below.

Cases per switch Not limited.

Characters per line Not limited, but only 255 are displayed.

Constants per enum Not limited.

Depth of #ifdef nesting Not limited.

Depth of #include nesting Not limited.

Depth of parenthesis nesting Not limited.

Depth of struct nesting Not limited.

Function formal parameters Not limited.

Length of file names 256 characters.

Length of path names 512 characters.

Length of identifiers First 75 characters are significant.

Length of macros Not limited.

Length of string literals 1000 characters (MS-DOS)
 (after concatenation) 5000 characters (all other operating systems)

Macro formal parameters 31.

Members per struct or union Not limited.

Number of global declarators Not limited.

Number of local declarators Not limited.

Number of file names A maximum of 4000 distinct file names can
be used in a project. Contact Abraxas if this is
not sufficient.

10/17/04 – 131 – CodeCheck

Number of lines per file Not limited.

Number of macros Not limited.

Number of type modifiers A maximum of 12 type modifiers (array of…,
pointer to…, reference to…, or function return-
ing…) can be attached to any one declarator.

Preprocessor character set The CodeCheck preprocessor and compiler
use the same character set. Preprocessor
characters can be negative.

Signedness of type char CodeCheck assumes that char is signed.

Size of type int CodeCheck assumes that an int is larger than
a short, and shorter than a long.

 10/17/04 – 132 – CodeCheck

Trouble-shooting Techniques

It sometimes happens that code which compiles without error on your C or
C++ compiler will generate a syntax warning or fatal error when scanned by
CodeCheck. The most likely causes for these errors are:

• A macro that is required by your system or library header files is
not defined.

• You specified the wrong –K option, so CodeCheck failed to recog-
nize a special keyword or macro, or interpreted an identifier as a
keyword.

• Your compiler has one or more nonstandard keywords that are not
known to CodeCheck. You can define new base types with the
function new_type().

First run CodeCheck again on the same source file, but specify command-
line options –H and –M, and do not use –J. This will create a listing file named
check.lst with all headers listed, all macros expanded, and all warnings shown
in context. Open this listing file and search for the first warning message.

It is important to search for the first warning message. Sometimes, when a
fatal error occurs, there may be one or more warning messages that are
numbered as Cxxxx preceding the fatal error message. Since CodeCheck
parser can tolerate some syntax error at certain extent, after the first warning
occurs, CodeCheck try’s to proceed the parsing on the source code. In the case
of a syntax error, CodeCheck will have misinformation or misinterpretation in
following the source code. When the error become irrecoverable. A fatal error
is generated. Quite often, after first warning message is removed, the fatal
error also will disappear.

It very commonly happens that your system and library header files have
conditional code that either ought to have been suppressed by the preproces-
sor, or ought not to have been suppressed. You can tell when the CodeCheck
preprocessor has suppressed code by looking at the line numbers in the left-
hand side of the page. When code is suppressed the line number is absent.
Examine all the code that precedes the first warning message to see if it was
suppressed when it ought to have been, or vice versa. This process can be very
educational: you may find conditional code for features that you never knew
existed. If you discover that a macro should have been defined (or undefined),
then run CodeCheck again with the appropriate –D and –U options.

10/17/04 – 133 – CodeCheck

If the error seems to be associated with a common nonstandard keyword
(e.g. near, far, huge, cdecl, pascal, interrupt) that should have been recognized
by CodeCheck, then it is likely that you specified –K0 or –K1 instead of –K2 or
–K3. Remember that strict ANSI C does not include these keywords.

If the error seems to be associated with an unusual keyword (e.g. packed) or
an unusual grammatical construction, then it is likely that your compiler has
some special features that Abraxas would like to know about. Let us know all
the details, preferably by fax. Meanwhile, if it looks as though the code would
be grammatical if CodeCheck were to ignore the special keyword, then a work-
around may be possible. For example, users of the Microtec C compiler should
always insert this rule into their custom rule files:

if (mod_begin)
{
ignore("packed");
ignore("unpacked");
ignore("interrupt");
}

This rule will cause the CodeCheck lexical analyzer to skip over every occur-
rence of packed, unpacked, and interrupt. Try checking your code again with a
rule like this. If it now parses without error then you have found a solution. As
another example, this rule file will prevent syntax errors for users writing for
the Symantec C compiler (these are not needed for Symantec C++):

if (mod_begin)
{
ignore("__handle");
undefine("_MSC_VER");
define("__ZTC__", "0x0300");
define("asm", "_intrinsic_");
}

It may also be possible to use a macro defined with the –D option to elim-
inate this kind of error. For example, the command

check -K0 –Dvoid=int foo.c

will invoke CodeCheck with the K&R keyword set, and the non-K&R keyword
void defined as a macro with the value int.

 10/17/04 – 134 – CodeCheck

Trouble Report Form
Fax to: Abraxas Technical Support
Fax number: + 503-232-0543

From:

Company:

CodeCheck Version: _________ Abraxas Part Number:

Operating System: __________ Platform:

C or C++ compiler:

Your phone number:

Your fax number:

Please describe your problem. If it is a syntax warning or fatal error, please
read the section on Troubleshooting and try the suggestions found there before
faxing in a Trouble Report Form! It frequently helps to show us the relevant
portion of a listing file, so that we can see the error message in its exact
context. Make this listing file by running CodeCheck with the –H and –M
options. Do not use –J.

10/17/04 – 135 – CodeCheck

Index

anonymous tags, 36
anonymous tags, 82
AT&T C++, 9
auto, 36
backward chaining, 17
based, 38
benign redefinition, 69, 113
bitfield, 32
Borland, 9

_seg type , 40
C++

access, 29
class names, 84
class variables, 82
constructor, 31, 82
copy constructor, 83
default constructor, 83
destructor, 31, 83
dialects, 9
friend, 33
functions, 97
inline, 34
members, 34
nested classes, 83
operator functions, 83
operator=, 83
pure function, 35
template function, 36
template parameters, 84
unscoped tags, 84
virtual function, 36

CCEXCLUDE, 11
CCRULES, 7
cdecl, 33, 134
char, 31

unsigned, 31
class, 31

abstract, 82
export, 82
far, 82
friend, 83
huge, 82
nested, 82, 83
template, 84

cnv_any_to_bitfield, 27
cnv_any_to_ptr, 27
cnv_bitfield_to_any, 27
cnv_const_to_any, 27
cnv_float_to_int, 27
cnv_int_to_float , 27
cnv_ptr_to_any, 27
cnv_ptr_to_ptr, 28
cnv_signed_to_any, 28
cnv_truncate, 28
CodeCheck

functions, 87
operators, 20
programs, 23
rule syntax, 19
rules, 15
statements, 19
storage classes, 25
variables, 24

CodeWarrior C/C++, 9
comma, 50

operator, 21, 64
separator, 29, 50

command line, 7
comment

macro, 69
nested, 10, 13, 54

comments, 7
comp, 40
conflict_file(), 37, 72
conflict_line, 36, 37, 72, 73, 94, 96
const, 32, 38
CONST_BOOL, 48
constant expression, 113
dcl_3dots, 29
dcl_abstract, 29
dcl_access, 29
dcl_aggr, 29
dcl_all_upper, 29
dcl_ambig, 29
dcl_any_upper, 29
dcl_array_size, 30
dcl_auto_init , 30
dcl_base, 30

 10/17/04 – 136 – CodeCheck

values
CHAR_TYPE, 31
CLASS_TYPE, 31
CONSTRUCTOR_TYPE, 31
DEFINED_TYPE, 31
DESTRUCTOR_TYPE, 31
DOUBLE_TYPE, 31
ENUM_TYPE, 31
EXTRA_FLOAT_TYPE, 31
EXTRA_INT_TYPE, 31
EXTRA_PTR_TYPE, 31
EXTRA_UINT_TYPE, 31
FLOAT_TYPE, 31
INT_TYPE, 31
LONG_DOUBLE_TYPE, 31
LONG_LONG_TYPE, 31
LONG_TYPE, 31
SHORT_DOUBLE_TYPE, 31
SHORT_TYPE, 31
STRUCT_TYPE, 31
UCHAR_TYPE, 31
UINT_TYPE, 31
ULONG_TYPE, 31
UNION_TYPE, 31
USHORT_TYPE, 31
VOID_TYPE, 31

dcl_base_name(), 31
dcl_base_name_root(), 31
dcl_base_root, 31
dcl_bitfield, 32
dcl_bitfield_anon, 32
dcl_bitfield_arith, 32
dcl_bitfield_size, 32
dcl_conflict, 36, 37, 96
dcl_count, 32
dcl_cv_modifier, 32
dcl_definition, 32
dcl_empty, 32
dcl_enum, 32
dcl_enum_hidden, 32
dcl_exception, 32
dcl_explicit, 32
dcl_extern, 32
dcl_extern_ambig, 32
dcl_first_upper, 33
dcl_friend, 33
dcl_from_macro, 33
dcl_function, 33
dcl_function_flags, 33

values

CDECL_FCN, 33
EXPORT_FCN, 33
FASTCALL_FCN , 33
INLINE_FCN , 33
INTERRUPT_FCN , 33
LOADDS_FCN, 33
PASCAL_FCN, 33
PURE_FCN , 33
SAVEREGS_FCN, 33
VIRTUAL_FCN, 33

dcl_function_ptr, 33
dcl_global, 33
dcl_hidden, 33
dcl_Hungarian, 33
dcl_ident_length, 33
dcl_init_arith, 34
dcl_initializer, 34
dcl_inline, 34
dcl_label_overload , 34
dcl_level()

values
ARRAY, 37
FUNCTION , 37
POINTER, 37
REFERENCE, 37
SIMPLE, 37

dcl_level_flags(), 37
values

BASED_FLAG, 38
CONST_FLAG, 38
EXPORT_FLAG, 38
FAR_FLAG, 38
HUGE_FLAG, 38
NEAR_FLAG, 38
SEGMENT_FLAG, 38
VOLATILE_FLAG, 38

dcl_levels, 34
dcl_local, 34
dcl_local_dup , 34
dcl_long_float , 34
dcl_member, 34
dcl_mutable, 34
dcl_need_3dots, 34
dcl_new_array , 34
dcl_no_prototype , 35
dcl_no_specifier, 34
dcl_not_declared, 35
dcl_oldstyle , 35
dcl_parameter, 35
dcl_parm_count, 35

10/17/04 - 137 - CodeCheck

dcl_parm_hidden, 35
dcl_pure, 35
dcl_scope_name, 97
dcl_signed, 35
dcl_simple, 35
dcl_static , 35
dcl_storage_first, 35
dcl_storage_flags, 35

values
AUTO_SC, 36
EXTERN_SC, 36
GLOBAL_SC, 36
REGISTER_SC, 36
STATIC_SC, 36
TYPEDEF_SC, 36

dcl_tag_def, 36
dcl_template, 36
dcl_throw_parameter, 36
dcl_type_before, 36
dcl_typedef, 36
dcl_typedef_dup, 36
dcl_underscore, 36
dcl_union_bits, 36
dcl_union_init , 36
dcl_unsigned, 36
dcl_variable, 36
dcl_virtual, 36
dcl_zero_array , 36
declarator, 29

base name, 37
level flags, 38
levels, 37

declarator name, 39
prefix, 39
root, 39
suffix, 39

default.cco, 7, 11
defined, 70
dialect, 9
double, 31

long, 31
short, 31

dynamic memory, 121
enum, 31
err_message(), 111
err_syntax, 111
exp_base_name(), 41
exp_empty_initializer, 41
exp_not_ansi, 41
exp_operands, 41

exp_operators, 41
exp_tokens, 41
expert system, 17
export, 33, 38

class, 82
extended, 40
extensions

Borland, 9
C++, 9
CodeCheck, 12
HP/Apollo , 9
Metaware, 9
Microsoft, 9
Symantec, 9
Vax, 9

extern, 24, 32, 36
far, 32, 38, 134

class, 82
fastcall, 33
fcn_aggr, 42
fcn_array, 42
fcn_begin, 42
fcn_com_lines, 42
fcn_decisions, 42
fcn_end, 42
fcn_exec_lines, 42
fcn_H_operands, 42
fcn_H_operators, 42
fcn_high, 42
fcn_locals, 42
fcn_low, 43
fcn_members, 43
fcn_no_header, 43
fcn_nonexec, 43
fcn_operands, 43
fcn_operators, 43
fcn_register, 43
fcn_simple, 43
fcn_tokens, 43
fcn_total_lines, 43
fcn_u_operands, 43
fcn_u_operators, 43
fcn_uH_operands, 43
fcn_uH_operators, 43
fcn_unused, 44
fcn_white_lines, 44
file

listing, 10, 11
object, 7
project, 7

 10/17/04 – 138 – CodeCheck

prototypes, 11
rule, 7, 10
stderr.out, 10

find_root(), 91
find_scoped_root(), 92
float, 31

long, 31
forward chaining, 17
friend

class, 83
function, 82

function
class_name(), 84, 97
conflict_file(), 94, 96
corr(), 106
dcl_array_dim(), 37
dcl_base_name(), 37, 96
dcl_level(), 37, 96
dcl_level_flags(), 96
dcl_name(), 38, 97
define(), 73, 94
exec(), 87
exit(), 87
fatal(), 88
fclose(), 108
fcn_name(), 44, 88
file_name(), 88
fopen(), 108
fprintf(), 108
fscanf(), 108
header_name(), 73, 89
header_path(), 73, 89
histogram(), 106
identifier(), 51, 92
idn_array_dim(), 46
idn_base_name(), 46
idn_filename(), 46
idn_level(), 46
idn_level_flags(), 47
idn_name(), 47
ignore(), 51, 92
included(), 88
isalpha(), 101
isdigit(), 101
islower(), 101
isupper(), 101
keyword(), 51, 92
line(), 56, 89
log2(), 105
macro(), 73, 94

maximum(), 106
mean(), 106
median(), 107
minimum(), 107
mod_class_lines(), 57, 85, 97
mod_class_name(), 57, 85, 98
mod_class_tokens(), 57, 85, 98
mod_name(), 57, 89
mode(), 107
ncases(), 107
new_type(), 39, 97
next_char(), 52, 92
no_undef(), 95
op_array_dim(), 67
op_base(), 67, 99
op_base_name(), 67, 99
op_bitfield(), 67, 99
op_function(), 67, 100
op_level(), 67, 100
op_level_flags(), 68, 100
op_levels(), 68, 100
op_macro(), 68, 74, 95, 100
option(), 89
pow(), 106
pp_name(), 74, 95
pragma(), 74, 95
prefix(), 39, 93
prev_token(), 52, 93
printf(), 108
prj_name(), 77, 89
quantile(), 107
reset(), 107
root(), 39, 93
scanf(), 109
set_option(), 90
set_str_option(), 91
sqrt(), 106
stdev(), 107
stm_unused_name(), 93
str_option(), 91
suffix(), 39, 93
system(), 87
tag_components(), 86, 99
tag_name(), 85, 99
test_needed(), 91
time_stamp(), 91
token(), 52, 94
tolower(), 101
toupper(), 102
undefine(), 74, 96

10/17/04 - 139 - CodeCheck

variance(), 107
warn(), 109

functions
conflict_file , 37, 73

globaldef, 36
globalref, 36
header files

search path, 9
suppress checking, 11

huge, 38, 134
class, 82

idn_base, 45
idn_bitfield, 45
idn_constant, 45
idn_exception, 45
idn_exception_base, 45
idn_exception_name(), 46
idn_function, 45
idn_global, 45
idn_levels, 45
idn_line, 45
idn_local, 45
idn_member, 45
idn_no_init , 45
idn_no_prototype , 46
idn_not_declared, 46
idn_storage_flags, 46
INIT_BOOL, 49
inline, 33
int, 31

unsigned, 31
interrupt, 33, 134
levels

declarator, 37
flags, 38

lex_ansi_escape , 48
lex_assembler, 48
lex_backslash, 48
lex_bad_call, 48
lex_big_octal, 48
lex_c_comment, 48
lex_char_empty, 48
lex_char_long, 48
lex_constant, 48

values
CONST_CHAR, 49
CONST_ENUM, 49
CONST_FLOAT , 49
CONST_INTEGER, 49
CONST_STRING, 49

lex_cpp_comment, 48
lex_enum_comma, 48
lex_float, 49
lex_hex_escape , 49
lex_initializer, 49

values
INIT_CHAR, 49
INIT_FLOAT , 49
INIT_INTEGER, 49
INIT_OTHER, 49
INIT_STRING, 49
INIT_ZERO, 49

lex_intrinsic , 49
lex_invisible, 49, 84
lex_key_no_space, 49
lex_keyword, 49
lex_lc_long, 49
lex_long_float , 49
lex_long_long , 49
lex_macro, 49
lex_macro_token, 50
lex_metaware, 50
lex_nl_eof, 50
lex_nonstandard, 50
lex_not_KR_escape , 50
lex_not_manifest, 50
lex_null_arg, 50
lex_num_escape , 50
lex_punct_after, 50
lex_punct_before, 50
lex_radix , 50
lex_str_concat , 50
lex_str_length, 50
lex_str_macro, 50
lex_str_trigraph , 51
lex_suffix, 51
lex_token, 51
lex_trigraph, 51
lex_uc_long , 51
lex_unsigned, 51
lex_wide, 51
lex_zero_escape , 51
lin_continuation, 53
lin_continues, 53
lin_dcl_count, 53
lin_depth, 53
lin_end, 53
lin_has_code, 53
lin_has_comment, 53
lin_has_label, 53

 10/17/04 – 140 – CodeCheck

lin_header, 53
lin_include_kind, 54
lin_include_name, 56
lin_indent_space, 54
lin_indent_tab, 54
lin_is_comment, 54
lin_is_exec, 54
lin_is_white, 54
lin_length, 54
lin_nest_level, 8, 54
lin_nested_comment, 54
lin_number, 54
lin_operands, 54
lin_operators, 54
lin_preprocessor, 55
lin_source, 55
lin_suppressed, 55
lin_tokens, 55
lin_within_class, 55, 84, 97
lin_within_function, 55
lin_within_tag, 55
lint, iv
loadds, 33
local, 42
logarithm, 105
long, 31

double, 31
float, 31
long long, 31
unsigned, 31

Macintosh
comp type, 40
extended type, 40

macros
benign redefinition, 113

manifest constant, 70
Metaware, 9
Metaware only),, 70
MetroWerks, 9
Microsoft, 9, 61

_segment type , 40
MPW Shell, 122
near, 32, 38
newline, 50
next_token(), 92
op_add, 61
op_add_assign, 62
op_address, 59
op_and_assign, 62
op_arrow, 59

op_assign, 62
op_assoc, 62
op_based, 61
op_bit_and, 61
op_bit_not, 59
op_bit_or, 61
op_bit_xor, 61
op_bitwise, 66
op_break, 65
op_call, 59
op_call_overload, 59
op_cast, 61
op_cast_to_ptr, 66
op_catch, 60
op_close_angle , 63
op_close_brace, 63
op_close_bracket, 63
op_close_funargs, 63
op_close_paren, 63
op_colon_1, 64
op_colon_2, 64
op_comma, 64
op_cond, 63
op_continue, 65
op_declarator, 66
op_delete, 60
op_destroy, 64
op_div, 61
op_div_assign, 63
op_do, 65
op_else, 65
op_equal, 61
op_executable , 66
op_for, 65
op_goto, 65
op_Halstead, 66
op_high, 66
op_if, 65
op_indirect, 60
op_infix, 66
op_init, 61
op_iterator, 64
op_iterator_call, 63
op_keyword, 66
op_left_assign, 63
op_left_shift , 61
op_less, 61
op_less_eq, 62
op_log_and, 62
op_log_not, 60

10/17/04 - 141 - CodeCheck

op_log_or, 62
op_low, 66
op_macro_arg, 64
op_macro_begin, 64
op_macro_call, 64
op_medium, 66
op_member, 60
op_memptr, 60
op_memsel, 60
op_more, 62
op_more_eq, 62
op_mul, 62
op_mul_assign, 63
op_negate, 60
op_new, 60
op_not_eq, 62
op_open_angle , 64
op_open_brace, 64
op_open_bracket, 64
op_open_funargs, 64
op_open_paren, 64
op_operands, 65
op_or_assign, 63
op_plus, 60
op_pointer, 64
op_post_decr, 60
op_post_incr, 60
op_postfix , 66
op_pre_decr, 60
op_pre_incr, 60
op_prefix, 66
op_punct, 65
op_reference, 64
op_rem, 62
op_rem_assign, 63
op_return, 65
op_right_assign, 63
op_right_shift , 62
op_scope , 64
op_semicolon, 65
op_separator, 65
op_sizeof, 61
op_space_after, 66
op_space_before, 66
op_sub_assign, 63
op_subscript , 61
op_subt , 62
op_switch, 65
op_throw, 61
op_try, 61

op_while_1, 65
op_while_2, 65
op_white_after, 66
op_white_before, 66
op_xor_assign, 63
options

–A, 8
–B, 8, 54
–C, 8
–D, 8
–E, 8
embedded SQL, 11
–F, 9
–G, 9
–H, 9
–I, 9
–J, 9
–K, 9
–L, 10
–M, 10
macros, 10
–N, 10, 13
–NEST, 10
nested classes, 10
nested comments, 10
–O, 10
–P, 10
progress, 10
prototypes, 11
–Q, 10
–R, 10
rule file, 10
–S, 11
–SQL, 11
stderr.out, 10
–T, 11
–U, 11
user defined, 11, 12
–V, 11
variables, 12
–W, 12
–X, 12
–Y, 12
–Z, 12

options:. include files
packed, 134
pascal, 33, 134
pointer

based, 61
pp_ansi, 69

 10/17/04 – 142 – CodeCheck

pp_arg_count, 69
pp_arg_multiple, 69
pp_arg_paren, 69
pp_arg_string, 69
pp_arith, 69
pp_assign, 69
pp_bad_white, 69
pp_benign, 69
pp_comment, 69
pp_const, 70
pp_defined, 70
pp_depend, 70
pp_elif, 70
pp_empty_arglist, 70
pp_empty_body, 70
pp_endif, 70
pp_error, 70
pp_if_depth, 70
pp_if_search(), 95
pp_include, 70
pp_include_depth, 70
pp_include_white, 70
pp_keyword, 71
pp_length, 71
pp_lowercase, 71
pp_macro, 71
pp_macro_conflict, 71, 72, 94
pp_macro_dup, 71
pp_not_ansi, 71
pp_not_defined, 71
pp_not_found, 71
pp_overload, 71
pp_paste, 71
pp_paste_failed, 71
pp_pragma, 71
pp_recursive, 71
pp_relative, 71
pp_semicolon, 72
pp_sizeof, 72
pp_stack, 72
pp_stringize, 72
pp_sub_keyword, 72
pp_trailer, 72
pp_undef, 72
pp_unknown, 72
pp_unstack, 72
pp_white_after, 72
pp_white_before, 72
preprocessor

argument, 69

arguments, 70
define, 72
defined, 70
keywords, 72
semicolon, 72
sizeof, 72
whitespace, 72

preprocessor:. undef. undef. endif. elif
prj_aggr, 75
prj_array, 75
prj_begin, 14, 75
prj_com_lines, 75
prj_conflicts, 75
prj_decisions, 75
prj_end, 75
prj_exec_lines, 75
prj_functions, 75
prj_globals, 75
prj_H_operands, 75
prj_H_operators, 75
prj_headers, 76
prj_high, 76
prj_low, 76
prj_macros, 76
prj_members, 76
prj_modules, 76
prj_nonexec, 76
prj_operands, 76
prj_operators, 76
prj_simple, 76
prj_tokens, 76
prj_total_lines, 76
prj_u_operands, 76
prj_u_operators, 76
prj_uH_operands, 76
prj_uH_operators, 76
prj_unused, 77
prj_warnings, 77
prj_white_lines, 77
project, 7
prototypes

creation, 11
pure specifier, 33
recursive, 71
register, 36
remove_path() (void), 89
saveregs, 33
segment, 38, 40
set_option, 13
short, 31

double, 31

10/17/04 - 143 - CodeCheck

unsigned, 31
signed, 35
sizeof, 72
skip_nonansi_indent(), 93
SQL, 11
square root, 106
static, 36
statistic, 25
stm_aggr, 79
stm_array , 79
stm_bad_label, 79
stm_cases, 79
stm_catchs, 79
stm_container, 79

values
COMPOUND, 78
DO, 78
ELSE, 78
FCN_BODY, 78
FOR, 78
IF, 78
SWITCH, 78
WHILE, 78

stm_cp_assign, 79
stm_cp_begin, 79

values
COMPOUND, 78
DO, 78
ELSE, 78
FCN_BODY, 78
FOR, 78
IF, 78
SWITCH, 78
WHILE, 78

stm_depth, 14, 79
stm_end, 79
stm_end_tryblock, 79
stm_goto, 79
stm_if_else , 79
stm_is_comp, 79

values
COMPOUND, 78
DO, 78
ELSE, 78
FCN_BODY, 78
FOR, 78
IF, 78
SWITCH, 78
WHILE, 78

stm_is_expr , 80
stm_is_high, 80

stm_is_iter, 80
stm_is_jump, 80
stm_is_low, 80
stm_is_nonexec, 80
stm_is_select, 80
stm_kind, 80
stm_labels, 80
stm_lines, 80
stm_locals , 80
stm_loop_back, 80
stm_members, 80
stm_no_break, 81
stm_no_default , 81
stm_operands, 81
stm_operators, 81
stm_relation, 81
stm_return_paren, 81
stm_return_void, 44, 81
stm_semicolon, 81
stm_simple , 81
stm_switch_cases, 81
stm_tokens, 81
stm_unused, 81
storage classes

CodeCheck, 25
struct, 31
Symantec, 9, 134
tag, 36
tag_abstract, 82
tag_anonymous, 82
tag_base_access, 82
tag_baseclass_access, 98
tag_baseclass_kind, 98
tag_baseclass_name, 98
tag_bases, 82
tag_begin, 82
tag_classes, 82
tag_constants, 82
tag_constructors, 82
tag_distance, 82
tag_end, 82
tag_fcn_friends, 82
tag_friends, 83
tag_functions, 83
tag_global, 83
tag_has_assign, 83
tag_has_copy , 83
tag_has_default, 83
tag_has_destr, 83
tag_hidden, 83

 10/17/04 – 144 – CodeCheck

tag_kind, 83
tag_lines, 83
tag_local, 83
tag_mem_access, 83
tag_members, 83
tag_nested, 83
tag_operators, 83
tag_private, 84
tag_protected, 84
tag_public, 84
tag_static_fcn, 84
tag_static_mem, 84
tag_template, 84
tag_tokens, 84
tag_types, 84
template

class, 84
function, 36

trigger, 19

trigraph, 51, 118
type

new keywords, 40
typedef, 36
types

CodeCheck, 24
union, 31
unpacked, 134
unsigned, 31, 36

char, 31
int, 31
long, 31
short, 31

verbosity, 14
virtual, 33
void, 31
volatile, 32, 38
whitespace, 69

