
© Copyright 1988-2005 by Abraxas Software, Inc. All rights reserved, worldwide.

C and C++
Source Code Analysis

using
CodeCheck

by
Loren Cobb, PhD.

CodeCheck™ is a product of Abraxas Software, Inc.
CodeCheck was designed & written by Loren Cobb.

For more information, contact:

Abraxas Software, Inc.
Post Office Box 19586

Portland, OR 97280, USA

Phone: 503-232-0540
Fax: 503-232-0543

Email: support@abxsoft.com
www.abraxas-software.com

CodeCheck - ii - 10/17/04

Table of Contents

PREFACE ..V

ACKNOWLEDGMENTS ... VI

QUICK START:

0.1 INSTALLATION.. 1

0.2 COMMAND-LINE OPTIONS .. 2

0.3 CODECHECK FILE NAMES ... 9

0.4 HOW TO USE CODECHECK...10

INTRODUCTION TO CODECHECK:

1.1 THE ELEMENTS OF STYLE...13

1.2 WHY PROGRAMS BREAK..15

1.3 WHY PROGRAMS FAIL TO PORT...18

1.4 THE STRUCTURE OF CODECHECK...21

1.5 DEBUGGING WITH CODECHECK...23

1.6 PREDEFINED MACRO CONSTANTS ...24

CHECKING TYPES:

3.1 HOW TO ANALYZE A TYPE DECLARATION..28

3.2 HOW TO DETERMINE THE TYPE OF AN IDENTIFIER ..31

3.3 HOW TO DETERMINE THE TYPE OF AN OPERAND...31

3.4 HOW TO DETECT IMPLICIT TYPE CONVERSIONS...32

10/17/04 – iii – CodeCheck

PORTABLE STYLE:

4.1 LEXICAL ISSUES IN PORTABILITY..34

4.2 PREPROCESSOR CONSIDERATIONS..45

4.3 PORTABILITY IN DECLARATIONS...55

4.4 PORTABILITY AT THE EXPRESSION LEVEL...63

4.5 PORTABILITY OF FUNCTIONS ..67

4.6 C COMPILER LIMITS ...69

MAINTAINABLE STYLE:

5.1 LEXICAL ISSUES IN PROGRAM MAINTENANCE..73

5.2 PREPROCESSOR CONSIDERATIONS..91

5.3 MAINTAINABILITY IN DECLARATIONS ...94

5.4 MAINTAINABILITY AT THE PROJECT LEVEL...99

SOFTWARE METRICS:

6.1 PROGRAM SIZE...100

6.2 LOGICAL COMPLEXITY...113

6.3 CODE DENSITY..119

CODECHECK RULE SETS:

7.1 VERIFYING POSIX.1 COMPLIANCE..127

7.2 COMPLIANCE WITH CODING STANDARDS ...134

7.3 PORTING TO ANSI C ...138

7.4 PORTING TO STRICT K&R COMPILERS..145

7.5 MEASURING CODE COMPLEXITY...147

CodeCheck – iv – 10/17/04

7.6 VERIFYING THE ORDER OF MODULE ELEMENTS..149

7.7 C++ RULES ..151

7.8 ADVANCED C++ RULES ..154

SUPPORTING MATERIAL:

8.1 GLOSSARY...169

8.2 BIBLIOGRAPHY..176

8.3 INDEX ...179

10/17/04 – v – CodeCheck

Preface
Producing accurate, reliable and flexible programs in C or C++ is a difficult

task. Even experienced programmers need tools to aid in the program develop-
ment process, but all too few tools exist in today’s market that can detect bugs in
C and C++ source code and help the programmer to avoid problems.

CodeCheck is a powerful tool for analyzing C and C++ source code. Unlike
other tools, Codecheck is itself fully programmable. It performs its primary task
— analyzing and critiquing C and C++ source code — entirely under the direc-
tion of a user-written control program.

CodeCheck is not a new version of that old C programmer’s standby, lint,
although it can perform some lint-like error detection. For example, Code-
Check compares all declarations and macro definitions across all modules of a
project, to detect inconsistencies. The main thrust of CodeCheck is to detect
noncompliance with codified style standards, to detect maintenance or port-
ability problems within code which already compiles perfectly on today’s
compilers, and to compute customized quantitative indicators of code size, com-
plexity, and density.

Standards and measures can be specified by the user for a tremendous
number of features of C code that have an impact on portability, maintainability,
and style. CodeCheck is designed to enhance dramatically the effectiveness and
efficiency of project management in commercial and industrial programming ef-
forts. A custom CodeCheck program specifying code standards and measures
can be written by a project leader using the CodeCheck language (actually a re-
stricted subset of C itself). CodeCheck can be programmed to:

a. Monitor compliance with standards for programming style,
rules for type-encoded prefixes for identifiers, proper use of
macros and typedefs, prototypes, etc.

b. Identify code that is not portable to or from any particular
environment (machine, compiler, operating system, or inter-
face standard).

c. Quantify code maintainability with user-defined measures
at all levels: line, statement, function, file, and project.
Compute McCabe and Halstead complexity measures.

Sample CodeCheck programs are provided for a variety of problems, ranging
from portability to complexity to compliance with style standards.

CodeCheck – vi – 10/17/04

Acknowledgments
We gratefully acknowledge the invaluable help given to the CodeCheck pro-

ject by the following individuals, who contributed suggestions and bug reports.
We couldn't have done it without you!

Jan-Anders Åkerholm
Wendy Averdung
George Baker
Wahab Baldwin
Ed Batutis
Nasser Bazzi
John Benson
Bill Bentley
Dana Birkby
Dale Bremer
John Bradley
Mike Branson
Linda Brigham
Jeff Brown
Van Brollini
Thomas Brustbauer
Walt Buehring
Laura Burke
Bill Campbell
Pat Cappelare
Camille Carum
Rob Chambers
Alex Chervet
Tim Child
John Clinton
Patrick Conley
Darryl Cornish
Bill Costello
Kevin Coyle
Mike Curry
Mark De May
Matt Diamond
David Doerner
John Doggett
Bob Domitz
Tom Dropka
George Entwhistle
Richard Evans
Aaron Fager
Brent Fairbanks
Bud Feuless
Steve Fine
Julianne Fontenoy
Keith Fulton
Greg Germano
Bud Feuless

Keith Fulton
Shawn Garbett
Jerry Garcia
Bonnie Gilmore
Dennis Glenn
Soo Hye Goh
David Gordon
Bruce Graham
Elaine Granoff
Jeff Johnson
Brett Halle
Esko Hannula
Othar Hansson
Tris Harkless
Bill Hazzard
John Herbold
Alison Hine
Paul Hurley
Jim Jacobson
David Johnson
Mike Johnson
Darrell Jones
Arun Joshi
Ken Joyner
Ed Kirk
Ian Koenig
Tom Kohler
Hannu Kokko
Detlef Kowalewski
Ron Kuhn
Patrica Langer
Mark Lamer
Eric Lear
David Linsky
Alan Liu
Martin Lord
Tom Lucas
Frank Lusardi
Paul McGlashan
Bill McMahon
Terry McNulty
Eric Melbardis
Mike Muegel
Marcel Meyer
Deborah Miller
Steve Monett

Stephen Montgomery
Tom Moreaux
Peter Morse
Mike Muegel
Greg Munger
Rick Murnane
Hugh Njemanze
John Norby
Michael O’Leary
Ingmar Olsson
Lyle Parkyn
Bob Peterson
Steve Peterson
Greg Pilkington
Darrel Pinson
Th. Pfister
Karl Pingle
John Plocher
Alan Pope
Chris Prendergast
Steve Ray
Mike Reid
Steve Reynolds
Dan Richards
Robin Riley
Kay Roche
Jim Roskind
Stefan Roth
Florian Sachse
Richard Sargent
Jay Sarkar
Alan Sauls
Karl Schopmeyer
Rick Schuessler
Peter Schwaller
Roshin Sharma
Andrew Shebanow
Ursula Shelander
Hartmut Stein
Ursula Shelander
Jeffrey Smith
Cass Smith
Tim Southgate
Brian Stromquist
Dan Sullivan
Malcolm Sutter

Padma Talasila
Larry Thiel
Julie Tiemann
Esther Tong
Gino van den Bergen
Thomas Wikshult
Clayton Wilkinson
David Williams
Roderick Williams
Tim Wint
Aaron Wohl
Matt Woodward
Heinz Wrosch
Cornelia Yoder
Robert Yu
Doug Zimmerman
Bruce Zimov

10/17/04 – 1 – CodeCheck

Chapter 0: Quick Start

0.1 Installation

1. Copy the CodeCheck program into the directory in which you normally
keep your programming tools.

2. Create a new directory for the collection of CodeCheck rule files that is sup-
plied on the distribution disk. Copy these rule files to this new directory.

3. Assign the pathname of the rule directory that you created in Step 2 to an
environmental variable named CCRULES. CodeCheck will use this variable to
locate rule files. Multiple pathnames may be specified in this environmental
variable if this is desired. Separate each pathname with the character normally
used in your operating system (Unix: colon, DOS & OS/2: semicolon,
Macintosh: comma). On Unix systems only, if this variable is not defined then
CodeCheck will look for rule files in a directory named /usr/CodeCheck.

4. CodeCheck looks for header files in the paths listed in the INCLUDE envi-
ronmental variable. (On Macintosh systems it looks for CIncludes.) Make sure
that this variable is correctly defined. This is important: CodeCheck cannot function
without access to the same header files that your C or C++ compiler uses. Multiple path-
names may be specified in this environmental variable if necessary.

5. If you have header files (e.g. system headers) that you wish CodeCheck to
read but not check, then assign the pathnames of the directories containing these
headers to an environmental variable named CCEXCLUDE. This step is not neces-
sary for CodeCheck: it is useful only when you wish to apply rules to some but
not all of the header files that are included in your C or C++ source files.

0.2 Command-Line Options

CodeCheck is invoked by means of a command line with either of these for-
mats:

CodeCheck – 2 – 10/17/04

check -options foo.c
check foo.c -options

In this command line format foo.c refers to the name of the C source file to
be analyzed. Any number of source files may be specified, arbitrarily intermixed
with options.

The rules that are to be used to perform this analysis can be specified in the
options list, as described below. If no rule file is specified, CodeCheck will look
for a precompiled rule file named default.cco, first in the current directory
and then in the directories specified in the CCRULES environment variable. If
this file is not found, CodeCheck will perform a simple syntactic scan of the
source file without any user-defined rules.

To analyze a multiple-file project with CodeCheck, either list all of the source
filenames on the command line, or create a new file containing the names of all
of the source files (excluding the names of header files and libraries). Give this
project file the extension “.ccp”. Then invoke CodeCheck, specifying the pro-
ject file instead of a source file:

check -options myproject.ccp

CodeCheck will apply its rules to each source file named in myproject.ccp,
and will apply project-level checking across all the files in the project. The ccp
extension informs CodeCheck that the specified file is a project file rather than a
C source file. This extension may be omitted in the command-line. Command-
line options may also be specified in the project file, one per line. Every option
placed in a project file applies to every source file in the project.

Command-line options are used to override default actions or conventions,
or to indicate additional actions that you want CodeCheck to perform.
CodeCheck command-line options are not case-sensitive. The available options
are:

–A Reserved for CodeCheck expansion. Please do not use.

–B Instruct CodeCheck that braces are on the same nesting level as
material surrounded by the braces. If this option is not
specified, then CodeCheck assumes that the braces are at the
previous nesting level. This option only affects the predefined
variable lin_nest_level.

–C Reserved for CodeCheck expansion. Please do not use.

10/17/04 – 3 – CodeCheck

–D Define a macro. The name of the macro must follow immedi-
ately. An optional macro definition can be specified after an
equal sign. The macro may not have any arguments. For exam-
ple,

check –DFOREVER=for(;;)

has the same effect as starting each source code file with

#define FOREVER for(;;)

If no macro definition is given, then CodeCheck assigns the
value 1 to the macro by default.

–E Do not ignore tokens that are derived from macro expansion
when performing counts, e.g. of operators and operands. The
default (–E not specified) is for CodeCheck to ignore all macro-
derived tokens when counting.

–F Count tokens, lines, operators, or operands when reading
header files. The default (–F not specified) is for CodeCheck not
to count tokens, lines, operators, or operands when reading
header files.

–G Do not read each header file more than once. Caution: Some
header files are designed to be read multiple times, with condi-
tional access to different sections of the header.

–H List all header files in the listing file. The –L option is assumed
if this option is found. If –L is found without –H, then the listing
file created by CodeCheck will not display the contents of
header files.

–I Specify a path to search when looking for header files. Use a
separate –I for each path. The pathname must follow –I, e.g.

 check -I/usr/myheaderpath src.c

Header directory pathnames identified with the –I command-
line option are searched before any directory paths listed in the
the INCLUDE environmental variable. CodeCheck Unix only: the
default header directory path is /usr/include.

CodeCheck – 4 – 10/17/04

–J Suppress all CodeCheck-generated error messages, e.g. syntax
warnings. This option does not suppress warning messages
generated by rules.

–Kn Identify the dialect of C to be assumed for the source files. A
digit should follow immediately, which identifies the dialect.
The dialects of C and C++ currently available are:

0 Strict K&R (1978) C
1 Strict ANSI standard C

 2 K&R C with common extensions
 3 ANSI C with common extensions (default)

4 AT&T C++
5 Symantec C++
6 Borland C++
7 Microsoft C++
8 IBM Visual Age C++
9 Metrowerks CodeWarrior C/C++

10 DEC Vax C and HP/Apollo C.
11 Metaware High C

If this option is not specified, then CodeCheck will assume that
the source code is ANSI with common extensions (–K3).

If option –K is specified with no digit following, then Code-
Check will assume that the user meant strict K&R C (–K0).

–L Make a listing file for the source file or project, with CodeCheck
messages interspersed at appropriate points in the listing. The
name of the listing file may follow immediately. If no name is
given then the listing file will be check.lst. The listing file
will be created in the current directory, unless a target directory
is specified with the –Q option.

–M List all macro expansions in the listing file. Each line containing
a macro is listed first as it is found in the source file, and second
as it appears with all macros expanded. The –L option is as-
sumed if –M is found. If –L is found without –M, then the list-
ing file created by CodeCheck will not exhibit macro expan-
sions.

–N Allow nested /* ... */ comments.

–NEST Allow C++ nested class definitions.

10/17/04 – 5 – CodeCheck

–O Append all CodeCheck stderr output to the file
stderr.out. This is useful for those using the MS-DOS
operating system, which does not permit the redirection of
stderr output.

–P Show progress of code checking. When this option is given,
CodeCheck will identify each file in the project as it is opened,
and each function definition as it is parsed.

–Q Specify a target directory. The pathname of the directory into
which all CodeCheck output files are to be placed must follow
immediately, e.g.

check -L -Q./temp mysource.c

Examples of such output files are the listing and prototype
files. If this option is omitted CodeCheck will write its output
files to the current working directory.

–R Specify a rule file. The name of the rule file must follow imme-
diately, e.g. if the rule file name is foobar.cc and the C or
C++ source filename is mysource.c:

check -Rfoobar mysource.c

CodeCheck first looks for a object (i.e. compiled) rule file of this
name (e.g. foobar.cco). If this file is out-of-date or not found,
CodeCheck will recompile the rule file (foobar.cc) into an
object file (foobar.cco) before proceeding to apply these
rules to the source file.

More than one –R file may be specified: in this case all the rules
will be compiled together into an object file named temp.cco.

If no –R file is specified, CodeCheck first looks for an object file
named default.cco. If this file is found then it’s rules are
used. If it is not found then checking proceeds with no user-
defined rules.

–Sn Apply rules while reading header files. A digit should follow
immediately, which identifies the kinds of header files:

0 No header files (default).
1 Headers enclosed in double quotes.

CodeCheck – 6 – 10/17/04

2 Headers enclosed in angle brackets.
3 All header files.

For example, suppose that these two lines are in a source file:

#include <ctypes.h> // A standard system header
#include "project.h" // An application header

When option –S1 is in effect, CodeCheck will apply it’s rules to
project.h but not ctypes.h. Please note that CodeCheck
must always read every header included in a source file — this option
only determines whether or not CodeCheck rules will be applied to the
contents of the various headers.

CodeCheck’s default behavior is not to apply its rules to the
contents of any included header files.

The environmental variable CCEXCLUDE, if it is used, takes
precedence over this option. Rules are never applied to files
that are found in directories listed in this variable.

–SQL Enables embedded SQL code. Note: this option must be spelled
in all uppercase.

–T Create a file of prototypes for all functions defined in a project.
The name of the prototype file may follow immediately. If no
name is given then the name for the prototype file will be
myprotos.h. The prototye file will be created in the current
directory, unless a target directory is specified with the –Q
option.

–U Undefine a macro constant. The name of the macro must follow
immediately. Thus check -UMSDOS foo.c has the effect of
treating foo.c as though it began with the preprocessor direc-
tive #undef MSDOS.

–V For CodeCheck users. See Section 1.4 of the Reference Manual
for usage suggestions.

–W For CodeCheck users. See Section 1.4 of the Reference Manual
for usage suggestions.

–X For CodeCheck users. See Section 1.4 of the Reference Manual
for usage suggestions.

10/17/04 – 7 – CodeCheck

–Y For CodeCheck users. See Section 1.4 of the Reference Manual
for usage suggestions.

–Z Suppress cross-module checking. Macro definitions and vari-
able and function declarations will not be checked for consis-
tency across the modules of a project.

Any letter of the alphabet may be used as a command-line option. Every op-
tion is remembered by CodeCheck and passed to the rule interpreter. Code-
Check rules can refer to and change these options by calling the functions op-
tion, set_option, str_option, and set_str_option (see Sections
1.3–1.5 of the Reference Manual for details). Option –X is recommended for
users who wish to design custom rule files whose behavior is controlled by a
command-line option.

CodeCheck – 8 – 10/17/04

0.3 CodeCheck File Names

The conventions used by CodeCheck for filename extensions are:

.cc A CodeCheck rule file, containing a set of rules for compilation by
CodeCheck. These rules are written in a subset of the C language. Code-
Check requires that this extension be used for rule filenames, though it
may be omitted in the –R command-line option.

.cch A CodeCheck header file, for inclusion in a CodeCheck rule file.

.cco A CodeCheck object file, produced by the CodeCheck compiler. This
file contains a compilation of the rules found in the rule file with the
same prefix.

.ccp A project file for CodeCheck. This file contains a simple list of the file-
names of all of the source modules that comprise a project, one filename
per line. Header files and libraries should not be listed in this file.

Depending on command line options, the following files may be created by
CodeCheck:

check.lst The default filename for the listing file (–L option).

myprotos.h The default filename for the prototype file (–T option).

stderr.out The filename for stderr output (–O option).

temp.cco The object file created by CodeCheck when more than one rule
file is specified (–R option).

10/17/04 – 9 – CodeCheck

0.4 How to Use CodeCheck

0.4.1 A Single User with Prepackaged Rules

Let us suppose that you simply want to check your C source file foo.c for
some of the common errors that are not usually detected by C compilers. You
want to see the warning messages in context, in a listing file. The command is

check –Rerror –L foo.c

When CodeCheck completes execution, open the listing file check.lst with
your editor. Each warning will be shown under the line that caused the warning,
with a marker immediately under the token that was being scanned when the er-
ror was detected.

This command made use of the prepackaged rule file error.cc, supplied by
Abraxas. Some other prepackaged rule files that you may find helpful are:

Tutorial and example rule files:

• dcl.cc.cc Example rules that use the declarator variables.
• cplist.cc Lists and describes all classes in each module.
• cplus.cc Example rules for C++ style checking.
• declare.cc Interpret global declarations in ordinary “English”.
• fcncalls.cc Generate a list of functions called by each function.
• forward.cc Example rules that illustrate forward chaining.
• lex.cc Example rules that use the lexical variables.
• nesting.cc Example rules for measuring iteration nesting.
• oometric.cc Computes several object-oriented metrics.
• order.cc Check for standard ordering of file elements.
• pp.cc Example rules that use the preprocessor variables.
• prefix.cc Example rules for checking declarator prefixes.
• sample.cc Example rules for compliance with standards.
• wrapper.cc Detect headers and #includes that are not “wrapped”.

Production rule files:

• ansi.cc Check for compatibility with the ANSI C standard.
• BSD43.cc Check for use of BSD 4.3 features that are not POSIX.
• braces.cc Check for consistent use of braces in high-level statements.
• complex.cc Measures of program complexity (McCabe, etc).

CodeCheck – 10 – 10/17/04

• error.cc Check for errors that compilers may not find.
• fromHP.cc Check for portability from HP/Apollo C.
• fromVAX.cc Check for portability from VAX C.
• general.cc Check for general portability.
• indent.cc Check for proper indentation.
• Halstead.cc Measures of program size developed by Halstead.
• logical.cc Check for if-conditions that are too complex.
• maintain.cc Check for general maintainability.
• posix.cc Check for violations of the POSIX namespaces.
• size.cc Measures of program size based on lines & statements.
• style.cc Check for compliance with Comeau's C style standards.
• SVID.cc Check for use of SVID features that are not POSIX.
• toIntel.cc Check for portability to the Intel iC-386 V4.2 compiler.
• toKR.cc Check for portability to the 1978 K&R C standard.
• toMPW.cc Check for portability to Macintosh MPW C version 3.2.
• toSuncpp.cc Check for portability to Sun C++ version 2.1.
• toVAX.cc Check for portability to VAX C.

0.4.2 Multiple Users with Custom Rules

Large corporations with many programmers often have staff assigned to
maintaining the tools used by these programmers, including tools like Code-
Check which are used for quality assurance. It is often appropriate to assign to a
single individual the responsibility to write and maintain a CodeCheck rule file
that encodes the corporate standards for C style. This compiled rule file would
be placed in a network directory with the name default.cco. Then each pro-
grammer can check his or her code with a command like:

check foo.c

Assuming that each programmer has defined an environmental variable
CCRULES that points to the directory containing default.cco, this command
will cause CodeCheck to apply the corporate rules to his or her source code.

Note: Please contact Abraxas for site license information.

10/17/04 – 11 – CodeCheck

Introduction to CodeCheck

1.1 The Elements of Style

Every programmer has a distinctive style of writing. This style is an expres-
sion of many things: the programmer’s sense of æsthetics, the demands of speed
and efficiency, the requirements of the customer, the needs of maintenance pro-
grammers, and the possibility that the program will need to be ported to another
computer or translated into another language. Many of these elements of style
require careful value judgments by the programmer or project leader. Once the
stylistic requirements are clearly defined, CodeCheck can be an invaluable tool
for monitoring each of these elements of program style.

The principal elements of good programming style are the requirements of
æsthetics, maintenance, and portability. Fortunately, there are significant over-
laps between these elements, as illustrated below. Can C programmers achieve a
style that is at once portable, easily maintainable, and elegant? The answer is an
emphatic “yes”, and CodeCheck can help any C or C++ programmer to develop
his or her personal style towards this goal.

Maintainability

AestheticsPortability

Figure 1: Overlap among the elements of good programming style.

CodeCheck – 12 – 10/17/04

There are several general principles that govern the overlap between these el-
ements:

1. Code that is technically “portable” but not easily maintained is not truly
portable. A nontrivial C program that is universally portable is a very rare ani-
mal indeed. There are so many dark and dusty corners in the syntax and seman-
tics of C that universal portability is next to impossible. Therefore, programmers
must make the purpose of their portable code evident — and this is the essence
of maintainability.

2. Code that is elegant without being maintainable will have a short life.
What good is elegant code if even its author cannot understand it one year later?
The C grammar lends itself to code that is highly abstract and superficially ele-
gant, especially in the area of character processing, but maintenance program-
mers may consider this style to be anything but æsthetically pleasing. What is
wrong here is the equation of elegance with æsthetics: the two concepts are not
identical.

3. Simplicity lies at the heart of portability, maintainability, and æsthetics.
For reasons difficult to understand, many C programmers never learn this essen-
tial truth. Quite possibly the fault lies not in the language itself, but in the cul-
ture that has grown up around it. This culture seems to value complexity,
density and abstractness over all other considerations, perhaps for the sheer fun
of creating puzzles that others find impossible to solve. Whatever the reason,
these values militate against clean, simple and understandable code.

10/17/04 – 13 – CodeCheck

1.2 Why Programs Break

Despite the C language’s reputation for portability, it is an unfortunate fact of
life that an apparently flawless C program will usually fail when compiled with
a different compiler, or under a different operating system, or on another type of
computer. The reasons for this fact of life are many, but there are three principal
forces at work which underlie almost all such problems.

1.2.1 Force #1: Language Parochialism

First, most programmers become thoroughly versed in only one implementa-
tion of C, on only one computer, under only one operating system. As they learn
more about this programming environment, they unwittingly begin to use its
many nonstandard features, and to take advantage of each of its quirks and
foibles. These nonstandard features are typically concentrated in the lowest lev-
els of operation: the preprocessor and the lexical analyzer of the compiler, the
file management routines of the operating system, and the bit-manipulation in-
structions of the machine. Inexperienced programmers do not realize the extent
to which computer languages are dependent on low-level conventions, and are
wholly unaware of the implications of using nonstandard features. Unfortu-
nately, these low-level nonstandard features tend to spawn an unending stream
of the most amazingly mysterious bugs, often months or years after a program is
first written.

1.2.2 Force #2: Programmer Machismo

The second force at work to make programs break is programmer machismo.
Many programmers are young, smart, brash, fearless, and anxious to prove
themselves to be wickedly clever. These are the programmers who write macros
like

#define put(x,p) (--(p)->cnt>=0?(*(p)->ptr++=(x)):flush(x,p))

and think that by getting all this power on one single completely undocumented
line they have achieved something special. What they have actually created is a
maintenance nightmare for someone else. (This delightful example is due to An-
drew Koenig, who dissects a slightly different version on page 80 of C Traps
and Pitfalls).

CodeCheck – 14 – 10/17/04

1.2.3 Force #3: Compiler Drift

The third program-destroying force operates not on application program-
mers, but on compiler writers. This force is the almost irresistible temptation to
include a new feature or language extension (nonstandard, naturally) that will
ease the life of programmers and sell lots more compilers. The temptation to in-
clude these features is certainly not all bad, as it does generate an endless stream
of new ideas for compilers, but it feeds directly into the other two forces. The re-
sult, if uncontrolled by tough project management and programmer self-disci-
pline, is code that is neither maintainable nor portable.

1.2.4 CodeCheck can help!

For the C language programmer, to defend against all programming practices
that can threaten portability or maintainability is a task requiring both an ency-
clopædic knowledge of C compilers and an almost superhuman level of self-dis-
cipline and attention to detail. For the project leader, the task of enforcing uni-
form standards for code structure and style is a severe test of the ability to read
and critique great volumes of dense code. CodeCheck is designed to automate
these tasks:

• The C programmer can use CodeCheck to review his or her
code at the end of the day, and to identify questionable construc-
tions that might have crept in. This daily CodeCheck program can
implement many lint-like code checking operations, as well as
checking for adherence to project style specifications.

• The project leader can use a different CodeCheck program on
a weekly basis to verify the programmers’ adherence to the project
style specifications, to quantify the amount of code produced, and
to measure critical qualities of the code, e.g. density and
complexity.

• Software contractors are frequently required to certify that
their code conforms to published governmental and industrial
standards for code complexity, among them the McCabe and Hal-
stead measures. A CodeCheck program can be run at the conclu-
sion of a project to document these particular measures, and many
others too.

10/17/04 – 15 – CodeCheck

1.3 Why Programs Fail to Port

1.3.1 The Many Standards for the C Language

There seem to be no fewer than four “standards” for the C language, all of
which are covered by CodeCheck. Figure 2 depicts the family tree for C stan-
dards, with the earliest version on top:

K&R

H&S

ANSI CC++ 3.0

POSIXANSI C++

Figure 2: The Evolution of C Standards.

Each descendent of the original C has added significant extensions to the
original language, while trying to remain true to the spirit of C.

? The K&R standard, as described in the first edition of Kernighan &
Ritchie (1978). This is certainly the single most influential book in
the history of C. The language was only loosely defined in this
“standard,” however, and it lacks many of the popular features that
are commonplace now (e.g. enumerated constants, prototypes, the
void type). Although obsolete, there are still many K&R compilers
in daily use around the world.

CodeCheck – 16 – 10/17/04

? The H&S standard, as described in the first edition of Harbison &
Steele (1984). This was the first careful description of the K&R stan-
dard, with many modern extensions included (e.g. the enum and
void types). The H&S standard represents a transitional phase be-
tween K&R and ANSI. Most pre-ANSI compilers in use today are
best described as adhering to the H&S standard.

? The ANSI C standard, as defined by the American National Stan-
dards Institute and certified internationally as ISO/IEC 9899. This
version represented a significant advance in precision over H&S. It
also introduced several significant innovations (e.g. the preproces-
sor paste operator).

? The POSIX standard, as defined by the American National Stan-
dards Institute and certified internationally as ISO/IEC 9945. Part 1
of this standard includes and extends the ANSI C standard, and de-
tails the interface and behavior of a standard library of operating
system services.

? The C++ 2.0 standard, as defined in “The Annotated C++ Refer-
ence Manual,” by Ellis and Stroustrup (1990). This book is the base
document for an ANSI committee that is now developing an official
standard for C++.

? The C++ 3.0 standard, as defined in “The C++ Programming
Language Manual, 3rd Edition” by Bjarne Stroustrup (1997). This
book is the base document of the pending ANSI C++ standard.

1.3.2 Two kinds of incompatibility

It is useful to break down a portation problem into two separate sources of
incompatibility:

1. The source environment will invariably have a variety of idiosyncrasies
which are common to no other, and which differ from the ostensible standard on
which the environment is based. These differences are source portation
problems.

2. The target environment will differ somewhat from the standard on which
it was based. These differences are target portation problems.

10/17/04 – 17 – CodeCheck

The prepackaged CodeCheck rule files supplied by Abraxas with CodeCheck
include several that address source and target portation problems. The source
portation rule files have names that begin with “from”, as in “fromVax.cc” ,
which detects special keywords and other peculiarities that are found only on
Vax C compilers. The target portation rule files have names that begin with “to”,
as in “toKR.cc”, which tests for non-K&R syntax and keywords.

CodeCheck – 18 – 10/17/04

1.4 The Structure of CodeCheck

A CodeCheck program looks just like a very simple C program. Indeed,
CodeCheck programs are written using a small subset of the C grammar, so any-
one who can read C can also read CodeCheck. A CodeCheck program is, in fact,
just a collection of if-statements (called “rules”) and variable declarations. The
CodeCheck interpreter translates this collection of rules into pseudocode, which
is used during the analysis of a C source to control the code checking operation.

CodeCheck
Rules

C Sources

CodeCheck

Code Analyzer

Rule Compiler

C Listing

Compiled Rules

Figure 5: Actions of the two components of CodeCheck.

To analyze a C source file, the user has only to specify the name of the C
source file and the name of the CodeCheck program. The CodeCheck program
will be compiled (if necessary), and then the C source file is analyzed in accor-
dance with the CodeCheck rules. As depicted in Figure 5, CodeCheck has two
logically separate components — the Code Analyzer and the Rule Compiler.

A brief bibliographic note

For those who are interested in referring to original sources, this manual
makes many references to the C literature. These are given in a compressed for-
mat, as illustrated below. Details (title, etc.) are given in the bibliography.

HS84:182 means Harbison & Steele, 1984, page 182.
RJ88:52 means R. Jaeschke, 1988, page 52.
AK89:99 means A. Koenig, 1989, page 99.

10/17/04 – 19 – CodeCheck

1.5 Debugging with CodeCheck

CodeCheck is, in addition to all of its other functions, a sensitive bug de-
tector, capable of identifying subtle bugs that many compilers miss. A program
that compiles without error may still fail to pass CodeCheck’s rigorous cross-
module syntactic and semantic analyses. There are two common reasons for this:
(a) your program deviates from strict C in ways that your compiler permits, or
(b) your program actually has a fault whose presence has gone unnoticed. The
former case is a mild problem — it only implies a lack of portability — but the
latter case may be quite serious.

To use CodeCheck as a bug-detector, use the rule file error.cc for an efficient
“once-over-lightly” check of your project or any one of its source files. Even with
no rule file at all, CodeCheck still performs a tremendous variety of unusual
syntactic and semantic checks on its input. Given an entire project, for example,
CodeCheck will compare external declarations and macro definitions across files
and will advise if any discrepancies are found — regardless of how many or
how few rules are included in the rule file. Please note that CodeCheck does not
perform many of the standard semantic checks that all C and C++ compilers do.
CodeCheck is designed to provide error checking that complements the checking
performed by your compiler.

CodeCheck – 20 – 10/17/04

1.6 Predefined Macro Constants

CodeCheck has a predefined macro constant, CODECHECK, which is designed
to permit conditional checking of C code. This macro constant has the value
100*(CodeCheck version number). Thus in CodeCheck version 8.02 this constant
will have the value 802.

The CODECHECK macro can be used to hide code from CodeCheck, so that it
will not be checked. This is extremely useful, for example, when in-line assem-
bler code is intermixed with C code. Here is an example:

#ifndef CODECHECK
•••
••• /* Code to be hidden from CodeCheck */
•••

#endif

The lint macro can be used in exactly the same way. CodeCheck predefines
this macro with the value 2.

CodeCheck also has another predefined macro constant BETA, for a version
in format x.xxBy, BETA has value of y. For a version in format x.xx, the value of
BETA is 0. Combined with macro CODECHECK, you can distinguish different
minor releases.

Depending on the specific environment for which it is implemented, Code-
Check will predefine certain additional macro constants. These constants (as of
CodeCheck version 8.02) are listed in the following table. See the update notes
that accompany CodeCheck for the latest additions and changes. The table of
macros is organized by operating system and compiler. Any of these may be
changed by the user on the command line (using the –D or –U options) or from
within rules (using the CodeCheck define and undefine functions).

10/17/04 – 21 – CodeCheck

Constant Value Comment

CODECHECK 802 Major Rev 802
BETA 3 Minor Rev 3
lint 2
__STDC__ 1 Option -k2 only.
__STDC__ 0 Except option -k2.
__cplusplus 1 C++ only (-k4 through –k9).
cplusplus 1 C++ only (-k4 through –k9).
__FILE__ <file name>
__LINE__ <line number>
__DATE__ <date>
__TIME__ <time>

Unix Operating System
unix 1
__unix 1

Constant Value Comment

DOS Operating System
MSDOS 1
M_I386 1
M_I86 1
M_I86LM 1
__386__ 1
__I386__ 1
__MSDOS__ 1
__LARGE__ 1 Except option -k7 or -k11
__BORLANDC 0x0500 Except option -k7 or -k11
__TURBOC__ 0x0500 Except option -k7 or -k11
_WIN32 1

OS/2 Operating System
__OS2__ 1
__FLAT__ 1
__IBMC__ 200 Except option -k6
__IBMCPP__ 200 Option -k4 only
__32BIT__ 1 Except option -k6
_M_I386 1 Except option -k6

NT Operating System
i386 1
MSDOS 1
_M_IX86 300
_MSDOS 1
X86 1
_WIN32 1

CodeCheck – 22 – 10/17/04

VMS Operating System
vax 1
vms 1
vaxc 1
vax11c 1
VAX 1
VMS 1
VAXC 1
CC$gfloat 1
CC$parallel 1

Macintosh Operating System
applec 1
MC68000 1
mc68000 1
m68k 1
macintosh 1

Borland C++
__BCPLUSPLUS__ 0x0340
__TCPLUSPLUS__ 0x0340
__CDECL__ 1
_Windows 1

Constant Value Comment

Borland C++ continued:

__TEMPLATES__ 1
wchar_t short

Microsoft C++
__single_inheritance Expands to nothing.
__multiple_inheritance Expands to nothing.
__virtual_inheritance Expands to nothing.
_M_I86 1 Except Windows NT.
_M_I86LM 1 Except Windows NT.
_M_IX86 300
_MSC_VER 1200
_MSDOS 1
X86 300
i386 1
MSDOS 1
_WIN32 1

Metaware High C
__HIGHC__ 1

Symantec C++
__SC__ 700

10/17/04 – 23 – CodeCheck

IBM Visual Age C++
__IBMCPP__ 350

Metrowerks CodeWarrior
__MWERKS__ 1

Debugging your source code with the CodeCheck preprocessor can be
greatly enhanced by using the "-D?" switch, which will display the current state
of CodeCheck internal symbol table for the pre-processor. If a particular intrinsic
definition is non-desirable then the "-U" switch can be used to undefine the
macro.

The CodeCheck product does not include the C/C++ system header files (
stdio.h, iostream.hpp, …). These must be obtained from your
compiler vendor, e.g. if source code to be analyzed by CodeCheck explicitly
references stdio.h (#include <stdio.h>), then that header file must
be available for CodeCheck to analyze. In summary for CodeCheck to analyze
source code, all parts of the entire project to be analyzed must be present in
order for the analysis to be successful.

CodeCheck – 24 – 10/17/04

Chapter 3: Checking Types

This section describes how to use CodeCheck to analyze type information
with CodeCheck rules. These techniques are necessary for those who wish to
write their own CodeCheck rules which detect conditions that depend on type
information.

The ability to detect and analyze type information in declarations has been a
part of CodeCheck since version 4.03. However, the ability to detect and analyze
type information within executable code is relatively new to CodeCheck, having
been introduced for C in version 5.04, and for C++ in version 5.05. Please refer to
the CodeCheck Reference Manual for the exact definitions of the CodeCheck
variable and functions mentioned in this chapter, and the Abraxas Technical
Note (www.abraxas-software.com/TechNotes.html) series for recent changes
and enhancements.

There are five broad categories of type-related rules that CodeCheck can en-
force. Rules can be written that detect:

1. a declaration of any specified type,

2. a cast to or from any specified type,

3. an implicit type conversion to or from any specified type,

4. use of a variable or function of any specified type,

5. use of an operand of any specified type for any specified opera-
tor.

In addition, CodeCheck automatically checks function argument types for com-
patibility with the prototype for the function called, if one is in scope, and also
checks the function return value for compatibility with the declared function
return type.

3.1 How to Analyze a Type Declaration

Types in C and C++ are either simple or complex. A simple type consists of
an unmodified base type, e.g. int or float, with possible qualifiers such as
const, volatile, near, far, huge, export, etc. A complex type has a

10/17/04 – 25 – CodeCheck

simple type as its base, and in addition has one or more additional levels, e.g.
pointer to…, array of…, function returning…, or reference to… (the latter is allowed
only in C++ and a few nonstandard C dialects). Each of these levels may have
also have qualifiers (e.g. const, pascal, interrupt, etc.).

When an identifier is declared, CodeCheck set the variable dcl_levels to
the number of levels in the type. Thus for simple variables dcl_levels will be
zero. CodeCheck sets the variable dcl_base to an integer that identifies the
base type of the identifier. The possible values of dcl_base are defined as
manifest constants in the CodeCheck header file check.cch, which should be
included in every rule file that makes use of type-checking services. Here are the
first five base types from check.cch:

#define VOID_TYPE 1
#define CHAR_TYPE 2
#define SHORT_TYPE 3
#define INT_TYPE 4
#define LONG_TYPE 5

As an example of the use of these CodeCheck variables to detect a specified
type, here is a rule that will issue a message whenever a simple variable of type
char is declared:

if (dcl_base == CHAR_TYPE)
if (dcl_levels == 0)

warn(1234, "Variable %s is a char.", dcl_name());

When the type in a declaration is complex, the function dcl_level()
returns an integer that identifies the kind of each level. Here is an example rule
that prints out the type of every global or local identifier that is declared:

int i, kind;

if (dcl_global || dcl_local)
{
printf("Variable %s: ", dcl_name());
i = 0;
while (i < dcl_levels)

{
kind = dcl_level(i++);
switch(kind)

{
case ARRAY:

printf("array of ");
break;

case POINTER:
printf("pointer to ");
break;

CodeCheck – 26 – 10/17/04

case REFERENCE:
printf("reference to ");
break;

case FUNCTION:
printf("function() returning ");
break;
}

}
printf("%s\n", dcl_base_name());
}

The manifest constants ARRAY, POINTER, REFERENCE, and FUNCTION are
defined in check.cch. In addition to dcl_level(), this rule also used the func-
tions dcl_name() and dcl_base_name(). These functions return the
declarator name and the name of the base type of the declaration, respectively.
The variables in the trigger for this rule are dcl_global and dcl_local,
which CodeCheck sets to 1 when a global or local identifier is declared,
respectively. (In this context “global” means file scope and external linkage,
while “local” means function or block scope.)

To obtain the type qualifiers for each level of a type, including the base type
level, use the function dcl_level_flags(). This function takes as its
argument the level, just like dcl_level(), and returns an integer that has a bit
set for each qualifier present. The header file check.cch contains manifest
constants that can be used as masks to obtain each of these qualifier flags. For
example, the following rule can be used to detect declarations in which the first
level has the const qualifier:

if (dcl_level_flags(0) & CONST_FLAG)
warn(1234, "%s has been declared constant.", dcl_name());

There are many other declarator variables and functions that are useful for
analyzing declared types — refer to the CodeCheck Reference Manual for
details.

3.2 How to Determine the Type of an Identifier

The CodeCheck variables and functions for determining the type of an
identifier that is used within executable code are almost identical to those for
declarations, except that they carry the prefix idn_ instead of dcl_.

10/17/04 – 27 – CodeCheck

The function idn_filename() and the variable idn_line can be used to
determine the location (i.e. file name and line number) of the declaration that is
currently in scope for the identifier as it is used in the executable code.

The variables idn_global, idn_local, idn_member, and
idn_parameter also resemble their dcl_ counterparts: they are used to
determine whether the identifier has global, local, or class scope, or is a function
parameter, respectively.

3.3 How to Determine the Type of an Operand

The CodeCheck variables and functions for determining the types of all the
operands of executable operators are similar to their counterparts for declara-
tions and identifiers. The major difference is that they require an additional
argument which specifies which operand to describe.

Operators may be unary (one operand, e.g. ~), binary (two operands, e.g.
+=), or ternary (three operands, e.g. ?:). Functions have as many operands as
they have arguments. Whenever an executable operator is encountered, Code-
Check sets the appropriate op_ variables to indicate which operator was found,
and sets op_operands to the number of operands taken by this operator.

The CodeCheck functions op_base(), op_levels(), op_level(), and
op_level_flags() differ from their declarator and identifier counterparts in
only one way: their first argument specifies which operand is to be described.
The operands are indexed from right to left. Thus the rightmost operand is the
operand 1, while the leftmost operand is the last (index given by
op_operands). For example, in the expression x = a + b the first operand for
op_add is b, and the second is a. For the operator op_assign, the first operand
is the result of (a+b), and the second is x.

In the special case of the cast operator, the first operand is the type of the
value to be cast, while the second operand is the result type after the cast has
been performed. Here is an example rule that detects every cast of a pointer to a
struct XYZ, to any result type, i.e. a cast that looks like (struct XYZ *):

if (op_cast)
{
if ((op_levels(1) == 2) &&

(op_level(1,0) == POINTER &&
(op_base(1) == STRUCT_TYPE) &&

CodeCheck – 28 – 10/17/04

(strcmp(op_base_name(1),"XYZ") == 0))
warn(1234, "Cast from (struct XYZ *) to anything.");

}

3.4 How to Detect Implicit Type Conversions

Implicit type conversions can happen in three different contexts. First, when a
value of one type is assigned to a value of another type, without an explicit cast,
then an implicit type conversion takes place. Second, when the type of an
argument that is passed to a function differs from the type of the formal
parameter in the prototype for the function, then it must be implicitly converted.
Third, an implicit type conversion occurs when type of the value in a return
statement differs from the return type of the function.

The CodeCheck functions used for determining the types involved in all
implicit type conversions are the same functions as used for operators. However,
to detect an implicit type conversion, one of the cnv_ variables must be used as
the trigger in the rule. When one of these variables is set, then CodeCheck uses
the op_ functions as though a cast operator were present for the conversion.

Here is an example rule that detects every implicit conversion of anything to
a pointer to a struct XYZ:

if (cnv_any_to_ptr || cnv_ptr_to_ptr)
{
if ((op_levels(2) == 2) &&

(op_level(2,0) == POINTER) &&
(op_base(2) == STRUCT_TYPE) &&
(strcmp(op_base_name(2),"XYZ") == 0))

warn(1234, "Implicit conversion to (struct XYZ *).");
}

10/17/04 – 29 – CodeCheck

Chapter 4: Portable Style

This section describes how to use CodeCheck to monitor style for portability.
Many of the rules described here are based on internal corporate standards for C
coding that have been made available to Abraxas Software, and also on the rec-
ommendations of two influential books: C Programming Guidelines, Second
Edition, by Thomas Plum, and Portability and the C Language, by Rex
Jaeschke.

The guidelines and recommendations found in these sources were designed
primarily to enforce both portability and maintainability. In the subsections that
follow, those guidelines that primarily affect program portability are presented.
Each guideline is followed by a description of the relevant CodeCheck variables
that can be used to construct corresponding CodeCheck rules.

4.1 Lexical Issues in Portability

4.1.1 Lexical Rules for Variable Names

C programmers have evolved a great variety of lexical guidelines for vari-
ables and their declarations. The guidelines reported here are specifically in-
tended to ensure portability. Additional guidelines that are intended to improve
maintainability may be found in Chapter 4.

1. Spell variable names in lower case only.

2. Names with external linkage must be unique in their first 6 characters.

3. Do not begin an identifier with an underscore character.

The predefined CodeCheck variables which are used to detect violations of
the above guidelines are, respectively:

Variable Meaning

dcl_any_upper Set to 1 if an upper-case character is found in an iden-
tifier name when it is declared.

CodeCheck – 30 – 10/17/04

dcl_extern_ambig If two external identifiers have names that agree on
the first 6 or more characters, regardless of case, then
this variable is set to the number of consecutive char-
acters on which they agree.

dcl_underscore Set to 1 if the name of a declared identifier begins
with an underscore character.

4.1.2 Nonstandard Characters

Many C compilers allow the use of characters that are not in the standard C
character set. Nonstandard characters are, by definition, not portable. The stan-
dard characters are (HS88:6):

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

! # % ^ & * () - _ + = ~ [] \ | ; : ' " { } , . < > / ?

blank newline backspace horizontal-tab

vertical-tab form-feed carriage-return

Recommendation: For general portability, do not use nonstandard characters.
Note that the characters $ and @ are nonstandard. CodeCheck provides a prede-
fined variable with which to detect nonstandard characters:

Variable Meaning

lex_nonstandard Whenever a character is found that is not in the stan-
dard C set, the value of this variable is set to the inte-
ger representation of the nonstandard.

To ignore nonstandard identifiers, call function skip_nonansi_ident().

Function Meaning

10/17/04 – 31 – CodeCheck

skip_nonansi_ident(char) Skip non-ANSI identifiers beginning with
'@','$' or '`'. Char parameter of this function specifies
the character which leads the identifier. The value of
the parameter only can be '@', '$' or '`'. The other
characters have no effect for this function.

4.1.3 Trigraphs

Trigraphs are special 3-character sequences introduced in ANSI C. Trigraphs
are significant as a portability issue only to the extent that older programs which
unwittingly use trigraph sequences within literal strings will no longer compile
correctly (RJ:28). ANSI C compilers translate trigraph sequences into their corre-
sponding single ASCII characters at a very early stage in the lexical analysis
phase of compilation. The trigraph sequences and their corresponding ASCII
characters are:

trigraph meaning
??= #
??([
??/ \
??)]
??' ^
??< {
??! |
??> }
??- ~

Recommendation: Search old programs for the ?? symbol pair, and replace ev-
ery occurrence with ?\?. Older compilers will simply ignore the backslash,
while ANSI compilers will treat ?\? as a question mark followed by an escape
sequence, thus recoding the string to ??. CodeCheck provides two predefined
variables for identifying inadvertent trigraphs:

Variable Meaning

lex_trigraph Set to 1 if an ANSI trigraph is found.

lex_str_trigraph Set to 1 if a trigraph is found within a string literal.

CodeCheck – 32 – 10/17/04

4.1.4 Numeric Escape Codes

Numeric escape codes are permitted in C, but they are normally used to refer
to control characters in the ASCII character set (HS84:25). Such numeric escape
codes will cause a program to fail when it is compiled and used in a non-ASCII
(e.g. EBCDIC) environment.

There is a potentially confusing aspect of hexadecimal escape sequences.
Unlike octal sequences, which may have at most three digits, the ANSI C stan-
dard specifies that a hexadecimal escape sequence may have any number of
digits. Thus the string literal "/xabcd" contains only one character (because a,
b, c, and d are all valid hex digits).

Recommendation: Do not use numeric escape codes unless it is absolutely nec-
essary. Carefully document the meaning of each such usage in the source code,
and use a manifest constant (#define) to make its meaning apparent. Code-
Check provides two predefined variables for detecting numeric escape codes:

Variable Meaning

lex_hex_escape When a hexadecimal escape sequence is found, this
variable is set to number of hexadecimal digits found.

lex_num_escape When a non-zero numeric escape sequence is found,
the value of this variable is set to the value of the es-
cape sequence.

lex_zero_escape When a zero escape sequence is found (e.g. \0, \00,
\x0, \0x0), the value of this variable is set to 1 if the
context is a character literal, or 2 if the context is a
string literal.

4.1.7 Escape Sequences in Character and String Literals

An escape sequence within a character or string literal is signaled by the
backslash character: \. The unrestricted use of escape sequences is a frequent
source of portability problems.

1. For reasons that shall remain forever mysterious, many pre-ANSI compil-
ers allow the digits 8 and 9 to appear within an octal escape sequence, as in

10/17/04 – 33 – CodeCheck

\09. This usage has always been hopelessly confusing, has always been non-
portable, and is now, fortunately, also ungrammatical.

2. Many pre-ANSI compilers do not support the hexadecimal escape se-
quence, as in \xA3. This usage is therefore not portable except among ANSI
compilers. The hexadecimal escape sequence \0xA3 (with a zero appearing be-
fore the x) is even rarer, and is forbidden by ANSI.

3. In the K&R dialect of C the only defined escape characters are in this set:

\n \b \t \r \f \\ \" \'

In all other cases when a backslash is followed by a character, the backslash is ig-
nored. The H&S dialect allows one more escape, \v (vertical tab). The, ANSI
standard includes three further escape characters: \a (alert or bell), \x
(hexadecimal), and \? (to disambiguate trigraphs). Thus pre-ANSI programs
which rely on the backslash being ignored before the letters a, v, or x are no
longer portable.

4. The empty character constant formed by two successive single quote marks
('') is not consistently interpreted by C compilers, and is not allowed by many.
In particular, it is not always the same as the null character '\0'.

5. Many C compilers allow character constants to have more than one charac-
ter. Even if all compilers did allow this usage, it would still be non-portable due
to the infamous NUXI problem. (“NUXI” refers to the worst-case scrambling of
the string “UNIX” that can result when porting encoding character strings).

To detect the above portability problems, CodeCheck provides the following
six predefined variables:

Variable Meaning

lex_big_octal Set to 8 or 9, respectively, when a numeric escape se-
quence or octal integer contains the digits 8 or 9.

lex_hex_escape When a hexadecimal escape sequence is found, this
variable is set to number of hexadecimal digits found.

lex_ansi_escape Set to 1 if an escape sequence contains one of the new
ANSI escape characters: a, v, or ?.

lex_not_KR_escape Whenever an escape character is found that is not de-
fined by K&R (i.e. \n, \b, \t, \r, \f, \\, \", \') then

CodeCheck – 34 – 10/17/04

this variable is set to the integer representation of the
character.

lex_char_empty Set to 1 if an empty character constant is found (e.g. '').
This variable does not flag the null character constant
('\0').

lex_char_long Set to 1 if a character constant is longer than one char-
acter.

4.1.8 System Variables

A useful convention has evolved within the C community in which identi-
fiers that are defined and used by the system (i.e. variables used by the compiler,
the linker, or standard system header files) are spelled with a leading un-
derscore character. If programmers conform to this convention by never spelling
an identifier in this way, then name conflicts are prevented. Unfortunately, some
programmers are unaware of this convention, and may inadvertently spell an
identifier with a leading underscore. Even if the program compiles without
error, it will break as soon as it is compiled on another system that happens to
use one of these names. This is, therefore, an obscure but significant portability
problem.

Recommendation: Adhere to this convention religiously. Do not spell identi-
fiers with a leading underscore character, unless you are writing system code.
CodeCheck predefined variable:

Variable Meaning

dcl_underscore Set to 1 if an identifier begins with an underscore
character.

4.1.9 The Numeric Constant Suffixes U, F, and L

The ANSI standard and some pre-ANSI compilers allow a suffix of U (for un-
signed) or F (for float) on numeric constants, in precisely the same way that the

10/17/04 – 35 – CodeCheck

suffix L (for long) is allowed in K&R C. Needless to say, this is not a portable us-
age among pre-ANSI compilers.

The suffix L is generally portable, except when it is used on a floating cons-
tant. Only some non-ANSI compilers recognize the long float type, so this is a
non-portable use of the L suffix.

Recommendation: The new suffixes U and F solve many problems of numeric
ambiguity, and should be used on the grounds that they increase program clarity
and make maintenance easier. The cost in terms of lack of portability is substan-
tially less than the benefit for program clarity.

CodeCheck provides four predefined variables for suffix detection:

Variable Meaning

lex_float Set to 1 if a numeric constant is found with the suffix
'F' or 'f'.

lex_long_float Set to 1 if a floating constant is found with the suffix
'L' or 'l'.

lex_suffix Set to 1 if a numeric constant is found with any suffix
('F', 'f', 'L', 'l', 'U', or 'u').

lex_unsigned Set to 1 if a numeric constant is found with the suffix
'U' or 'u'.

4.1.10 Octal and Hexadecimal Numeric Constants

Octal numeric constants have always been among the very worst features of
the C language, and the ANSI standard does little to improve matters. That octal
constants should be distinguished from decimal constants simply by adding a
leading zero is just plain appalling. Uncounted thousands of hours of program-
mer time have been invested over the years in finding errors caused by plausible
but wrong numeric constants. This is a serious and continuing maintenance
problem.

Hexadecimal numeric constants are in themselves problematic, but difficul-
ties arise because they are frequently used to refer to characters. This use of nu-
meric constants is non portable because C is not tied to the ASCII character set.

CodeCheck – 36 – 10/17/04

As one important example, bear in mind that IBM mainframes use the EBCDIC
character set.

Recommendation: Avoid octal constants whenever feasible. If not feasible, add
a comment that loudly proclaims that the constant is intended to be octal, or use
a manifest constant (e.g. #define OCTALTEN 010) to make plain the octal na-
ture of the number. Similarly, avoid the use of any numeric constant to refer to a
character. CodeCheck provides a predefined variable for detecting constants of
any radix:

Variable Meaning

lex_radix Set to the radix of an integer constant (2, 8, 10, or 16).

4.1.11 The End-of-File Marker

The ANSI standard is quite clear on its specification of the appearance of the
end of a file: the last character before the end-of-file marker in a non empty
source file must be a newline character. This makes good sense, but some pre-
ANSI compilers allow a file to terminate with any character. Consequently, the
ends of files must be checked for portability to ANSI. This may seem like a
minor point, but some programmers have used this deficiency of pre-ANSI
compilers to accomplish some very bizarre and completely unnecessary tricks.

Recommendation: It is good practice to end a file with a newline, and it is bad
practice to play games with header files that end in the middle of macro defini-
tions, declarations, or function definitions.

Variable Meaning

lex_nl_eof Set to 1 if a non empty source file does not end with a
newline.

4.1.12 String Concatenation

Under the ANSI C standard, consecutive string constants are concatenated
automatically during the lexical analysis phase of compilation. Older compilers

10/17/04 – 37 – CodeCheck

may not perform this operation, thus causing a problem for code that is to be
ported from ANSI C to an older compiler. CodeCheck predefined variable:

Variable Meaning

lex_str_concat Set to 1 if two string constants are found, separated
only by whitespace.

4.1.13 Embedded Assembler Code

Assembler code is, almost by definition, non portable. CodeCheck provides a
predefined variable with which large source files can be automatically scanned
for embedded assembler.

Variable Meaning

lex_assembler Set to 1 when assembler code is detected.

4.1.14 Continuation Lines

In ANSI standard C, a line can be continued with a backslash character that is
followed immediately by a newline character. In older dialects of C this kind of
line continuation marker was permitted only within macro definitions. Code-
Check provides a predefined variable for detecting the use of the continuation
marker outside of macro definitions.

Variable Meaning

lex_backslash Set to 1 if a backslash-newline pair is found at the end
of a line that is not part of a macro definition.

CodeCheck – 38 – 10/17/04

4.1.15 Special Reserved Keywords and Identifiers

Many compilers have special keywords and identifiers which are shared by
no other compiler. For example, Microsoft uses the special keyword _based.
Needless to say, these keywords are generally non portable. CodeCheck pro-
vides two functions for detecting specified identifier and keyword names.

Function Meaning

identifier(char *) Returns the integer value 1 whenever an identifier is
found that matches the argument string.

keyword(char *) Returns the integer value 1 whenever a keyword is
found that matches the argument string.

4.1.16 Wide String and Character Literals

The ANSI standard provides a mechanism for using strings and characters
that come from very large alphabets, such as Chinese. These “wide” strings and
characters are lexically signaled with the prefix L immediately before the leading
quote.

CodeCheck provides a predefined variable for detecting wide literals:

Variable Meaning

lex_wide Set to 1 if an ANSI wide string or character constant is
found (prefix L).

4.1.17 Visibility of Nested Tag Names

ANSI C and all versions of C++ allow tag definitions to be nested within tag
definitions. However, the visibility of identifiers associated with this tag
depends on which dialect is in use. In ANSI C the nested tag is treated as though
it is has global scope. In C++ the nested tag has class scope, but in versions prior
to 3.0 the tag name and all of its enum constants are exported to the enclosing
scope, to provide compatibility with C. In version 3.0 this compatibility feature

10/17/04 – 39 – CodeCheck

is removed for nested enum constants and applies to nested tag and typedef
names only if they do not conflict with names in the enclosing scope. Needless to
say, a portability problem arises.

Recommendation: When writing C++ or porting C code to C++, all nested iden-
tifiers should be explicitly scoped when used outside the enclosing scope. Do
not depend on compatibility with ANSI C.

CodeCheck provides a predefined variable for detecting problematic un-
scoped identifiers:

Variable Meaning

lex_invisible Set to 1 when an unscoped identifier is visible to ANSI
C and all versions of C++ prior to 3.0, but is invisible
to C++ 3.0.

CodeCheck – 40 – 10/17/04

4.2 Preprocessor Considerations

The preprocessor may very well be the most fertile source of portability
problems in the C language. This has occurred because (a) until the ANSI
standard, the preprocessor was never adequately standardized, and (b) it is a
powerful tool with many quirks and foibles, just crying out for exploitation by
“clever” programmers.

4.2.1 Whitespace within Preprocessor Directives

Some C preprocessors allow whitespace (space or tab characters) to precede
the # symbol, and to come between the # symbol and the preprocessor com-
mand. Such use of whitespace is not portable to older compilers, although the
trend is toward permitting it (HS88:27). The ANSI standard permits this use of
whitespace.

Other forms of whitespace, e.g. vertical tabs, form-feeds, backspace charac-
ters, etc, are not at all portable if used anywhere within a preprocessor directive.

Recommendation: To enhance visibility, preprocessor lines should be clearly
marked with the # symbol in the first position of the line. However, indentation
of the preprocessor directive after the # symbol is desirable to indicate, for
example, the nesting level of #if directives. CodeCheck provides three pre-
defined variables for detecting whitespace within preprocessor directives:

Variable Meaning

pp_white_before Set to the amount of whitespace (in characters) that
precedes the # character in a preprocessor directive.

pp_white_after Set to the amount of whitespace (in characters) that is
found after the # character and before the keyword in
a preprocessor directive.

10/17/04 – 41 – CodeCheck

pp_bad_white Set to 1 if a non-space, non-tab whitespace character
(e.g. vertical tab, form-feed, or backspace) is encoun-
tered within a preprocessor directive.

4.2.2 Leading Whitespace within Included File Names

Some C preprocessors do not automatically delete any whitespace characters
(spaces or tabs) that precede the filename within #include directives. For ex-
ample:

#include < wrong.h>
#include " wrong.h"

This is a portability issue, since many preprocessors do not perform this service.

Recommendation: Avoid leading whitespace in these filenames.

CodeCheck provides a predefined variable for detecting leading whitespace
within #include filenames:

Variable Meaning

pp_include_white Set to 1 if the filename in an #include directive has
leading whitespace.

4.2.3 Preprocessor Arithmetic

Some preprocessors will not perform any arithmetic at all within preproces-
sor directives, although they will do logical comparisons. Preprocessor
arithmetic is therefore not portable. Even preprocessors that do perform arith-
metic (notably ones that conform to the ANSI standard) will still not evaluate the
sizeof function. This means that some apparently good code ideas, such as the
following from a Symantec header, will fail:

1 #if sizeof(int) < 4
2 long total;
3 #else
4 int total;

CodeCheck – 42 – 10/17/04

5 #endif

Recommendations: (a) Avoid preprocessor arithmetic. (b) You may be able to
use a definition in the file limits.h (supplied with all ANSI compilers) to
deduce “sizeof” information. For example, if INT_MAX is defined in this file as
32767, then the size of an int must be 2 bytes.

CodeCheck provides two predefined variables for detecting these problems:

Variable Meaning

pp_arith Set to 1 if a preprocessor directive requires arithmetic
calculation.

pp_sizeof Set to 1 if a preprocessor directive requires the
evaluation of a sizeof function.

4.2.4 Macro Parameters

CodeCheck automatically checks for certain common problems that can occur
with macro parameters. For example, a macro call with the wrong number of ar-
guments will evoke an automatic CodeCheck warning message. Whenever this
occurs CodeCheck will also set the predefined variable lex_bad_call so that
the user can have his own custom-designed error message triggered. A few de-
viant preprocessors allow a macro call to have fewer arguments than specified,
even though this is permitted in neither K&R nor ANSI C.

A separate problem occurs when a variable has the same name as a macro
function. Most compilers will accept this usage, but some will treat it as an error.

CodeCheck provides four predefined variables for detecting these and other
similar problems:

Variable Meaning

lex_bad_call Set to the difference between the number of argu-
ments found and the number of arguments expected
when a macro function is expanded.

lex_null_arg Set to 1 if an actual argument is omitted in a macro
call, e.g. XYZ(abc,,123).

10/17/04 – 43 – CodeCheck

pp_arg_count Set to the number of formal parameters found in a
macro definition.

pp_empty_arglist Set to 1 if the definition of a macro “function” has no
formal parameters.

pp_overload Set to 1 if a variable name conflicts with a macro func-
tion name.

4.2.5 Comments in Macro Definitions

Once upon a time there was a marvelously clever programmer who realized
that by placing a comment in a macro definition like this

#define PASTE(a,b) a/**/b

he could cause the preprocessor to “paste” the actual arguments for a and b to-
gether, so that the compiler would see only the single token ab. For example, the
macro call f(PASTE(i,j)) would be perceived by the compiler as f(ij), re-
gardless of the values of the variables i and j. From this little piece of clever-
ness there sprang up a whole cottage industry of token pasting by programmers
eager to exploit the very latest in program obfuscation. This example, which is
dissected further in RJ88:37, violates the cardinal principle of program maintain-
ability: the intent of the programmer must be fully evident on first reading.
Furthermore, not all compilers will be so accommodating as to ignore the em-
bedded comment—all ANSI preprocessors will treat the comment as whitespace,
and will therefore not paste any tokens together. Thus this mode of token
pasting also presents a portability problem.

Fortunately, ANSI has come to the rescue with two badly needed provisions:
(a) comments within macro definitions must be treated as whitespace, and (b)
programmers who feel an overwhelming need to paste tokens may use the new
“paste” operator (##) for the preprocessor.

Recommendation: Do not paste tokens unless you have a truly solid reason.
CodeCheck provides two predefined variables for detecting these problems:

Variable Meaning

pp_comment Set to 1 if two tokens within a macro definition are
separated only by a comment.

CodeCheck – 44 – 10/17/04

pp_paste Set to 1 if the “paste” operator (##) is found in a
macro definition.

In its normal (ANSI-conforming) mode of operation, CodeCheck treats any
comment within a macro definition as whitespace. However, when the –K0 com-
mand-line switch is active (indicating K&R [1978] C syntax), CodeCheck inter-
prets an embedded comment as a paste operation. Thus even old programs that
use this unfortunate feature can be scanned successfully with CodeCheck.

4.2.6 The #elif Directive

The ANSI standard and some pre-ANSI compilers allow the #elif prepro-
cessor directive and the defined() preprocessor function. These useful addi-
tions to the preprocessor permit clearer conditional compilation directives, as
this example illustrates:

1 #if defined(macintosh)
2 •
3 •
4 #elif defined(MSDOS)
5 •
6 •
7 #elif defined(vms)
8 •
9 •
10 #endif

Unfortunately, not all compilers support these new constructions.

Recommendation: If maintainability is more important than portability, then by
all means use these new constructions — the benefits are significant. Avoid these
new constructions only if you are writing for the most general kind of
portability.

CodeCheck provides two predefined variables for detecting these usages:

Variable Meaning

pp_defined Set to 1 if the defined preprocessor function is en-
countered.

pp_elif Set to 1 if the #elif preprocessor directive is en-
countered.

10/17/04 – 45 – CodeCheck

4.2.7 Macro Names and Parameters Inside Strings

Some older compilers permit macro expansion within string literals. This
practice is permitted neither in ANSI C nor in the majority of non-ANSI compil-
ers. It can pose a serious portability problem for programs that rely on such ex-
pansions.

Another problem occurs in macro definitions when a formal parameter of a
macro is used inside a string literal. The Vax C compiler, among others, will per-
form substitution for the formal parameter name inside the string literal, but
ANSI standard compilers will not.

CodeCheck provides two predefined variables for detecting these problems:

Variable Meaning

lex_str_macro Set to 1 when a macro identifier is found within a
string constant.

pp_arg_string Set to 1 if a macro formal parameter is found inside a
string literal in the macro definition.

4.2.8 New ANSI Preprocessor Features

In the process of standardizing and regularizing the C preprocessor, the ANSI
standards committee elected to introduce a number of new features. Each of
these features constitutes a portability problem for developers who wish to port
their project from an ANSI conforming compiler to a strict K&R compiler. These
new features include the following:

1. Use of a macro that expands to a filename within an #include di-
rective.

2. The #error and #pragma preprocessor directives.

3. The defined() preprocessor function.

CodeCheck – 46 – 10/17/04

4. The paste and stringize preprocessor operators.

5. The #elif conditional directive.

In addition to predefined variables which flag each new feature, CodeCheck
provides a single predefined variable, pp_ansi, for detecting all such features,
and pp_unknown for flagging non-ANSI preprocessor directives.

Variable Meaning

pp_ansi Set to 1 if a preprocessor feature is encountered that is
new with the ANSI standard.

pp_defined Set to 1 if the defined preprocessor function is en-
countered.

pp_elif Set to 1 if the #elif preprocessor directive is en-
countered.

pp_error Set to 1 if the #error preprocessor directive is en-
countered.

pp_include Set to the following on an #include directive:
1: filename is in quotes, and was obtained from a

macro expansion,
2: filename is in quotes, not from a macro,
3: filename is in angle brackets, from a macro,
4: filename is in angle brackets, not from a macro.
5: filename is not enclosed (Metaware C only).
6: filename is not enclosed (Vax C only).

pp_paste Set to 1 if the ANSI “paste” operator (##) is found in a
macro definition.

pp_pragma Set to 1 if a #pragma preprocessor directive is en-
countered.

pp_stringize Set to 1 if the ANSI “stringize” operator (#) is found
in a macro definition.

pp_unknown Set to 1 if a non-ANSI preprocessor directive is found.

10/17/04 – 47 – CodeCheck

4.2.9 Preprocessor Keyword Substitution

Some preprocessors allow macro names to be used after the # symbol, as in
this example:

#define macro define
#macro square(x) ((x)*(x))

Needless to say, this is not a portable use of macro substitution. CodeCheck pro-
vides a predefined variable for detecting this usage:

Variable Meaning

pp_sub_keyword Set to 1 if the keyword in a preprocessor directive is
itself a macro name.

4.2.10 Recursive Macros

A macro is recursive if its name appears as a token within its definition. C
preprocessors vary in their permissiveness with respect to recursive macros. The
ANSI standard specifies that the definition of a macro be “turned off” for the du-
ration of the expansion of that macro, to prevent the preprocessor from plunging
into an infinite recursion. The Microsoft C preprocessor, however, only turns off
the definition of macro constants, thus allowing recursive macro functions. Other
preprocessors only turn off the current macro being expanded, so that two mu-
tually recursive macros can cause an infinite recursive death.

Recommendation: Avoid recursive macros.

CodeCheck provides a predefined variable for detecting recursive macro def-
initions:

Variable Meaning

pp_recursive Set to 1 if a recursive macro definition is found.

CodeCheck – 48 – 10/17/04

4.2.11 Macro Definition Length

Some preprocessors store each macro definition as a string, usually after
whitespace has been eliminated. Such preprocessors may have a maximum , e.g.
100 characters, for the length of any one macro definition. ANSI C, by contrast,
does not impose any length restrictions on macro definitions. Thus long macro
definitions may cause a problem when porting to non-ANSI compilers.

Variable Meaning

pp_length Set to the length (in characters) of the body of a macro
definition, after redundant whitespace has been elim-
inated.

4.2.12 Relative Pathnames for Header File Inclusion

An ambiguity arises when an #include directive within a header file contains
a relative pathname. Here is a Unix example:

#include <../../foobar.h>

Is the file foobar.h to be found in a location that is relative to the source file,
or relative to the header file that contains the above #include directive ? Older
K&R compilers always look in a location that is relative to the source file. The
ANSI standard does not specify where to look. Many modern compilers look in
a location that is relative to the header file that contains the #include directive.
(CodeCheck looks in both places.) This ambiguity means that C and C++
programmers who use relative pathnames may encounter difficulties when
changing to a different compiler, or when porting to a different system.

Recommendation: Avoid relative pathnames in header #include directives.

CodeCheck provides a predefined variable for detecting relative pathnames:

Variable Meaning

pp_relative Set to 1 when an #include directive within a header
file specifies a relative pathname.

10/17/04 – 49 – CodeCheck

CodeCheck – 50 – 10/17/04

4.3 Portability in Declarations

4.3.1 Array, Structure, and Union Initializers

Some new compilers permit initializers for automatic (i.e. not static and
not external) arrays, structures, and unions. What they are actually doing is gen-
erating executable code that assigns initial values to these objects. Note that this
is somewhat different from true initialization, in which the initial values are part
of the image of the program. In any event, since not all compilers permit this
usage, it is not portable.

Another difficulty is caused by union initializers in general: many compilers
do not allow any sort of union initialization.

Recommendation: For the sake of portability, do not try to give initializers to
automatic arrays, structures, or unions. It is better either (a) to make such objects
that need initializers static, or (b) to use explicit initialization. CodeCheck
provides two predefined variables for detecting initialization problems:

Variable Meaning

dcl_auto_init Set to 1 if an initializer for an automatic array,
struct, or union is found.

dcl_union_init Set to 1 when a union initializer is found.

4.3.2 Enumerated Variables

Traditional K&R compilers do not support enumerated variables, but most
modern H&S compilers do. Unfortunately, pre-ANSI C compilers are not fully
consistent in their implementations. Because of this there is a mild portability
problem with enumerated variables.

A greater difficulty is presented by compilers that allow computed values for
enumerated constants: these are seldom portable.

10/17/04 – 51 – CodeCheck

Recommendation: The advantages of enumerated variables for enhancing pro-
gram clarity greatly outweigh the portability problems that they may cause. Use
them, but don’t use computed explicit values for the enumeration constants.

1 if (dcl_init_arith && (dcl_base == ENUM_TYPE))
2 warn(99, "Non portable computed initializer.");

Variable Meaning

dcl_init_arith Set to 1 when a computed initializer is found, or
when a computed explicit value for an enumerated
constant is found.

dcl_base Set to an integer which identifies the base type of the
current declarator. The base types are defined as
manifest constants in the header file check.cch.
The manifest constant for an enumerated type is
ENUM_TYPE.

4.3.3 Bitfields

The incautious use of bitfields can lead to many portability problems. First,
an obvious problem: compilers differ with respect to the maximum size of the
bitfields that they allow. Thus a bitfield of 20 bits will compile without com-
plaint on a 32-bit computer, but will cause a syntax error on a 16-bit computer.

Another portability problem can be caused by bitfields that are not explicitly
declared unsigned. If such a bitfield is compiled by a compiler that considers
bitfields to be unsigned, if the bitfield is initialized with a negative value, e.g. –1
(a natural way to fill all the bits), and if the value of this field is then assigned to
a signed int or long, then the result will be a small positive integer. However, a
compiler that considers bitfields to be signed will obtain a negative result in the
same assignment. Harbison & Steele (HS88:106) recommend that no type other
than unsigned ever be used for a bitfield. They point out that a bitfield of type
int can be compiled in three different ways: signed, unsigned, and pseudo-un-
signed (see Glossary for definition). The signedness of a bitfield for any given C
compiler is usually (but not necessarily!) the same as the signedness of a char.

Two additional minor portability problems: first, ANSI C compilers now al-
low bitfields to be members of unions, but most pre-ANSI compilers do not

CodeCheck – 52 – 10/17/04

allow this use of bitfields. Second, some compilers do not allow anonymous
(unnamed) bitfields.

CodeCheck provides four variables for detecting these problems.

Variable Meaning

dcl_bitfield Set to 1 if a bitfield is found.

dcl_bitfield_anon Set to 1 if an unnamed bitfield is found.

dcl_bitfield_arith Set to 1 if a bitfield width requires calculation.

dcl_bitfield_size Set to number of bits in a bitfield.

dcl_union_bits Set to 1 if a bitfield is declared as a member of a
union.

4.3.4 Empty Declarations

Empty declarations are allowed in K&R C, but most are not permitted in
ANSI C. The exception is an empty declaration in which the type specifier is a
forward reference to a tag that will be needed later. A CodeCheck rule can be
constructed to detect non-ANSI empty declarations, as follows:

1 if (dcl_empty)
2 {
3 if ((dcl_base != ENUM_TYPE)
4 && (dcl_base != UNION_TYPE)
5 && (dcl_base != STRUCT_TYPE))
6 && (dcl_base != CLASS_TYPE))
7 warn(9999, "Empty declaration.");
8 }

The CodeCheck variables used in this rule are:

Variable Meaning

dcl_empty Set to 1 if an empty declarator is found.

dcl_base Set to an integer which identifies the base type of the
current declarator. The base types are defined as

10/17/04 – 53 – CodeCheck

manifest constants in the CodeCheck header file
check.cch.

4.3.5 Microsoft “Based” Pointers

Microsoft C version 6.0 introduced into C a new and completely non-portable
pointer type: the “based” pointer. To implement this new concept, four new non-
portable keywords (_segment, _segname, _based, _self) and one new op-
erator (:>) were introduced. In its default mode of operation CodeCheck will
recognize these constructs, and will check for improper grammatical usage just
as it does for the standard keywords and operators. To disable these and all
other extended keywords and operators, specify -K1 (for ANSI C) or -K0 (for
strict K&R C) on the command line.

4.3.6 Pascal Functions

Many implementations of C allow the programmer to call and write functions
that use the conventions for passing arguments and returning values. Unfortu-
nately, there is little agreement on how the pascal keyword should be used.
Here are three representative cases:

• Microsoft C: pascal is a type modifier, similar to cdecl.

• MPW C: pascal is a type specifier, similar to float.

• Think C: pascal is a storage class specifier, similar to static.

As a result of these differences, it is difficult to use the pascal keyword in a
fully portable way. One way to avoid the worst kind of trouble with this and
similar keywords is never to declare more than one function per declarator list.
Additionally, the CodeCheck function keyword() can be used to detect
occurrences of this troublesome keyword.

1 if (dcl_function && (dcl_count > 1))
2 warn(98, "Use only one declarator here.");
3
4 if (keyword("pascal"))
5 warn(99, "This keyword is not fully portable.");

CodeCheck – 54 – 10/17/04

Variable/Function Meaning

dcl_count Set to the index of the current declarator within a
comma-delimited declarator list. The first declarator
has index 1, the second 2, etc, until a semicolon is
found that marks the end of the list.

dcl_function Set to 1 if this is a function declaration.

dcl_level() See Section 3.2 of the Reference Manual for details.

keyword() Returns the integer value 1 whenever a keyword is
found that matches the argument string.

4.3.7 Variable Numbers of Arguments

The ability to call functions with variable numbers and types of arguments is
a powerful feature that differentiates C from most other high-level computer
languages. Unfortunately, it also presents some portability problems. Some com-
pilers, e.g. Microsoft C, allow users to indicate that a function takes a variable
number of arguments by terminating the parameter list in the function declarator
with a comma:

int main(argc, argv,)

This usage is not portable to ANSI standard C, nor to many other non-ANSI
compilers. ANSI conforming compilers need to see an ellipsis (three dots …) fol-
low the last comma, while non-ANSI compilers generally consider the last
comma to be a syntax error.

By the same token, the ANSI ellipsis notation for functions with variable
numbers of arguments is equally non-portable to pre-ANSI compilers. Code-
Check provides three variables for handling these problems:

Variable Meaning

dcl_3dots Set to 1 whenever an ellipsis (...) is found.

10/17/04 – 55 – CodeCheck

dcl_need_3dots Set to 1 when an ellipsis (...) is needed in a function
parameter list, but is not found.

dcl_oldstyle Set to 1 if an old-style (i.e. not prototyped) function is
declared.

4.3.8 Type Definitions

Some C compilers, e.g. MPW C, do not permit typedef names to be declared
more than once within a module. Many compilers do tolerate this practice, how-
ever, so this becomes a portability problem for those programmers who acquire
the dubious habit of placing identical type definitions within many header files.

Recommendation: Take care to define each type in exactly one header file, and
use conditional compilation switches to guarantee that the contents of each
header is compiled only once per module.

Variable Meaning

dcl_typedef_dup Set to 1 whenever a duplicate type definition is
found.

4.3.9 Function typedef names

Many C compilers will accept typedef names for function types, and some
will accept such names in function definitions. For example:

1 typedef void weird(int);
2 weird myfunc(int x)
3 {
4 /* What is the return type??? */
5 }

This usage is not permitted in ANSI C, because of the ambiguity involved in the
return type of the function — is it a function returning void, or a function re-
turning a function returning void? Compilers that permit this usage make the
former assumption, because the latter is impossible in C.

CodeCheck – 56 – 10/17/04

Recommendation: Do not typedef function types, even if your compiler allows
it. Here is a CodeCheck rule that will detect such type definitions:

1 if (dcl_typedef)
2 if (dcl_function)
3 warn(99, “Do not typedef function types.”);

Variable Meaning

dcl_function Set to 1 if this is a function declaration.

dcl_typedef Set to 1 if a typedef name has been declared.

4.3.10 Uninitialized static float or double variables

The C language has always required that static variables without explicit ini-
tializers be initialized by the compiler to zero. However, a portability issue
arises with static float, double, and long double variables: will the compiler use
a zero bit-pattern for the initializer, or the floating-point representation of zero?
The two are not necessarily the same. ANSI-conforming compilers are required
to use the floating-point representation of zero, but many pre-ANSI compilers
use the zero bit-pattern.

Recommendation: Always explicitly initialize static float, double, and long
double variables. Here is a CodeCheck rule that will detect this problem:

1 if (dcl_static)
2 if ((dcl_simple || dcl_function)
3 && (! dcl_initializer)
4 && (dcl_base >= FLOAT_TYPE)
5 && (dcl_base <= LONG_DOUBLE_TYPE))
6 warn(99, "Need explicit initializer here.");

Variable Meaning

dcl_base Set to an integer which identifies the base type of the
current declarator. The base types are defined as
manifest constants in the CodeCheck standard header
file check.cch.

10/17/04 – 57 – CodeCheck

dcl_function Set to 1 if this is a function declaration.

dcl_simple Set to 1 when a simple variable (i.e. neither pointer,
array, reference, nor function) is declared.

dcl_initializer Set to 1 when an initializer is found.

dcl_static Set to 1 when a non-local static identifier has been
declared.

CodeCheck – 58 – 10/17/04

4.4 Portability at the Expression Level

4.4.1 Non-ANSI expressions

At least one popular compiler, Gnu C, allows parenthesized compound state-
ments within expressions — an extension to C that is most certainly not part of
the ANSI standard. For example, consider this macro defined in the Gnu header
file ctype.h:

#define tolower(c) ({ int _c=(c); isupper(_c) ? _tolower(_c) : _c; })

The purpose of this odd construction is to guarantee that the argument of the
macro will be referenced only once. While this is a laudable goal, there is also
the temptation for programmers to use this extension in their own code. This
will create an immediate portability problem. CodeCheck has a trigger that will
detect this (and other) non-ANSI expressions:

Variable Meaning

exp_not_ansi Set to 1 if a non-ANSI C expression is found. This
variable does not trigger on C++ expressions that con-
form to the ANSI base document for C++.

10/17/04 – 59 – CodeCheck

4.5 Portability of Functions

4.5.1 Labels without Statements

Although no published grammar for C permits labels to exist without a state-
ment that is to be labeled, many C compilers do permit this. For example, the la-
bel “end” in the following code fragment does not label any statement, even
though it is clear what the author intended. This use of labels is forbidden in
ANSI C, and should generate a syntax error when compiled by any strictly con-
forming compiler.

1 while (x == 0)
2 {
3 /* ... */
4 end:
5 }

Recommendation: For maximum portability, do not use labels without state-
ments. The statement should be empty, i.e. a lone semicolon. CodeCheck has a
predefined variable that will detect labels without statements:

Variable Meaning

stm_bad_label Set to 1 whenever a label or list of labels is found that
is not attached to any statement.

4.5.2 Hidden Parameters

Traditional K&R compilers allow an identifier declared in the compound
statement of a function (i.e. just after the first open brace) to have the same name
as one of the function’s formal parameters, thus effectively hiding the parameter
from the function. This practice is disallowed in the ANSI standard, and in the
better H&S compilers. Here is an example of the problem:

1 void bomber(xptr)
2 char *xptr; /* The formal parameter is */
3 { /* hidden by the declared */
4 long *xptr; /* automatic variable. */
5
6 *xptr = 40000; /* This can crash the system, */
7 } /* but the function compiles. */

CodeCheck – 60 – 10/17/04

Recommendation: Since the only plausible circumstance in which this might
occur is as a result of programmer error, there is little to say other than “don’t do
it”. It may be an interesting test of your compiler to see if it can catch this bug.
CodeCheck has a predefined variable that will find it:

Variable Meaning

dcl_parm_hidden Set to 1 if a function parameter has the same name as
an identifier declared within the function’s com-
pound statement.

10/17/04 – 61 – CodeCheck

4.6 C Compiler Limits

4.6.1 Identifier, String, and Line Lengths

ANSI conforming C compilers allow internal identifiers to have a significance
of at least 31 characters, but strict K&R compilers use a significance of only 8
characters. To further confuse the issue, the ANSI standard guarantees only 6
significant characters with no case sensitivity for external identifiers, due to the
limitations of certain linkers. The variable dcl_extern_ambig should be used
to detect portability problems caused by ambiguities in external identifiers, and
the following rule may be used to enforce length limitations on internal identi-
fiers:

1 if (dcl_ident_length > 31)
2 warn(1001, "Identifier length exceeds 31.");

Recommendation: Use long names for both external and internal identifiers. If your
linker demands short external names, then use the preprocessor to define your
long names as short 6-character encoded names (as suggested in HS84:15). This
will allow you to refer to variables by a long descriptive name, and still have
short names for the linker. For example:

#define ptrRecentEventRecord p32RER

/* ... intervening code ... */

extern EventRecord *ptrRecentEventRecord;

ANSI conforming compilers allow string literals up to at least 509 characters
in length, but the actual limits may vary widely. There is no guaranteed mini-
mum among non-ANSI compilers. Recommendation: restricting string literals to
255 characters may be a safe, conservative policy.

1 if (lex_str_length > 255)
2 warn(1002, "String too long for portability.");

C imposes no limit on line-length, but most compilers do have a limit, usu-
ally in the 100-500 character range. Lines longer than 80 characters may not be

CodeCheck – 62 – 10/17/04

portable. The POSIX.2 standard specifies a maximum line length of 2048
characters.

CodeCheck provides several predefined variables for detecting length viola-
tions:

Variable Meaning

dcl_extern Set to 1 if the extern storage class is explicitly speci-
fied in a declaration.

dcl_extern_ambig If two external identifiers have names that agree on
the first 6 or more characters, regardless of case, then
this variable is set to the number of consecutive char-
acters on which they agree.

dcl_global Set to 1 if an identifier with external linkage has been
declared. This includes variable, function, and type-
def names.

dcl_ident_length Set to the number of characters in the declared identi-
fier.

dcl_local Set to 1 if a local identifier has been declared.

dcl_static Set to 1 when a non-local static identifier has been
declared.

lex_str_length Set to the length of a string literal (the terminating
zero is not counted).

lin_length Set to the number of characters in the line (excluding
the newline character at the end of the line).

4.6.2 Preprocessor Limits

C compilers vary greatly with respect to limitations on the nesting of #if con-
ditionals and #include directives. For example, ANSI conforming compilers
must allow the nesting of #if conditionals to a depth of 8, but it is unsafe to as-
sume that more than two or three will be portable (RJ89:195).

10/17/04 – 63 – CodeCheck

It is prudent to limit the depth of header file inclusion, because some prepro-
cessors allow a nesting depth of only three or four.

The ANSI standard specifies that compilers must allow up to 31 formal para-
meters in macros, but pre-ANSI compilers may allow only four or five (RJ88:182).

CodeCheck provides three predefined variables for enforcing these prepro-
cessor limits:

Variable Meaning

pp_if_depth Set to the new depth of conditional compilation
whenever an #if, #ifdef, #ifndef, #else,
#elif, or #endif directive is activated.

pp_include_depth Set to the new depth of file inclusion whenever an
#include directive is executed, or an end-of-file in a
header file is encountered. See also lin_source.

pp_arg_count Set to the number of formal parameters found in a
macro definition.

CodeCheck – 64 – 10/17/04

Chapter 5: Maintainable Style

Good C programming style is much more than simply indenting source code
according to a specific formal system. Indeed, the indentation problem has be-
come trivial as a result of the commercial publication of code “beautifiers”,
which automatically adjust the indentation of a program to the specifications of
the programmer. As many authors have pointed out, writing C with a good style
requires adhering to a well thought-out list of rules for such things as choosing
variable names, declaring variables, using preprocessor directives, etc. In many
cases these rules can be expressed as CodeCheck rules.

This section describes how to use CodeCheck to monitor style for maintain-
ability. The CodeCheck rules given here are based on various corporate stan-
dards for C coding that have been made available to Abraxas Software.

The C language is so large, its notation so compact, and its restrictions so few
that stylistic conventions are absolutely mandatory for all C programmers. The
only question is: how tough should they be? Most successful companies that em-
ploy teams of programmers use conventions and standards that are very tough
indeed — and this toughness almost certainly contributes materially to their suc-
cess. Discipline in itself does not inhibit creativity: this is just as true in the art of
C programming as it is in any other art.

Because CodeCheck rules are written in a simplified form of C, the style rules
can be edited and customized to accommodate almost any taste. A great number
of CodeCheck variables have been predefined for an enormous range of stylistic
issues, not just the ones identified by Thomas Plum. This means that project
managers can design stylistic rule sets that correspond precisely to the issues
that are of concern to them, and need not feel constrained to the style
propounded by Plum.

10/17/04 – 65 – CodeCheck

5.1 Lexical Issues in Program Maintenance

5.1.1 Choosing Identifier Names

Programmers use a great variety of guidelines for choosing names for vari-
ables. One popular set of guidelines is paraphrased here.

1. Names should never be redefined in inner blocks. This practice confuses
more than it helps, and should be avoided.

2. Function and typedef names must begin with a capital letter, variable
names must begin with a lowercase letter.

3. Macro names must always be all uppercase, non-macro names must never
be all uppercase.

4. Variable, function, and typedef names should never conflict with labels.

5. Class names must begin with a capital letter and has a corporate prefix,
like Microsoft MFC class CEdit.

6. Data members of a class must have a prefix.

Some of the CodeCheck predefined variables and functions which can be
used to detect violations of guidelines similar to the preceding are:

Variable Meaning

dcl_all_upper Set to 1 if only uppercase letters are found in an iden-
tifier name when it is declared.

dcl_enum_hidden Set to 1 when a declarator name hides an enumerated
constant.

dcl_first_upper Set to the number of initial uppercase letters in an
identifier when it is declared.

dcl_hidden Set to 1 if an inner-block declaration hides an outer.

dcl_label_overload Set to 1 if an inner-block declarator name matches a
label within the same function.

CodeCheck – 66 – 10/17/04

dcl_typedef Set to 1 if a typedef name has been declared.

5.1.2 Hungarian Notation

Many companies have found that program maintenance can be simplified by
adopting a spelling convention for identifiers which encodes the type of the vari-
able in lowercase prefixes. The actual name of the identifier is distinguished
from its prefixes simply by beginning the name with a capital letter. This is the
so-called Hungarian notation.

Many variations on the Hungarian theme exist. One simple set of Hungarian
prefixes is described below, together with a set of CodeCheck rules that test for
compliance with these guidelines. This is an illustrative example only, and is not
intended to be a complete specification for a Hungarian prefix scheme.

Variable names must begin with one or more lowercase prefixes that describe the
type of the variable. These prefixes are, in the order in which they must be used:

1. "p" if this is a pointer, "np" if near pointer, "fp" if far pointer;

2. "a" if this is an array,

3. "c" if the base type is char, "s" if short, "i" if int, and "l" if long;

4. "g" if the base type is float, "d" if double;

5. "x" if the base type is struct, "w" if union, "en" if enum;

6. "b" if the base is the typedef name "Boolean".

For example, suppose that we want to declare that Foo is an array of far pointers
to Booleans. The declared name of the identifier should be afpbFoo and the dec-
laration should read:

Boolean far * afpbFoo[] = { /* initializers */ };

This spelling scheme can be enforced with one single CodeCheck rule:

 1 #include <check.cch>
 2
 3 int k;

10/17/04 – 67 – CodeCheck

 4
 5 if (dcl_global || dcl_static || dcl_local)
 6 {
 7 k = 0;
 8 while (k < dcl_levels)
 9 {
10 switch (dcl_level(k))
11 {
12 case ARRAY:
13 if (! prefix("a"))
14 warn(1001, "a prefix missing on array.");
15 break;
16 case POINTER:
17 switch (dcl_level_flags(k))
18 {
19 case NEAR_FLAG:
20 if (! prefix("n"))
21 warn(1002, "n prefix missing on near pointer.");
22 break;
23 case FAR_FLAG:
24 if (! prefix("f"))
25 warn(1001, "f prefix missing on far pointer.");
26 break;
27 }
28 if (! prefix("p"))
29 warn(1001, "p prefix missing on pointer.");
30 break;
31 }
32 k++;
33 }
34 switch (dcl_base)
35 {
36 case VOID_TYPE:
37 if (! prefix("v"))
38 warn(1001, "v prefix missing on void.");
39 break;
40 case ENUM_TYPE:
41 if (! prefix("n"))
42 warn(1001, "v prefix missing on enum.");
43 break;
44 case CHAR_TYPE:
45 if (! prefix("c"))
46 warn(1001, "c prefix missing on char.");
47 break;
48 case SHORT_TYPE:
49 if (! prefix("s"))
50 warn(1001, "s prefix missing on short.");
51 break;
52 case INT_TYPE:
53 if (! prefix("i"))
54 warn(1001, "i prefix missing on int.");
55 break;
56 case LONG_TYPE:

CodeCheck – 68 – 10/17/04

57 if (! prefix("l"))
58 warn(1001, "l prefix missing on long.");
59 break;
60 case FLOAT_TYPE:
61 if (! prefix("g"))
62 warn(1001, "g prefix missing on float.");
63 break;
64 case DOUBLE_TYPE:
65 if (! prefix("d"))
66 warn(1001, "d prefix missing on double.");
67 break;
68 case UNION_TYPE:
69 if (! prefix("w"))
70 warn(1001, "w prefix missing on union.");
71 break;
72 case STRUCT_TYPE:
73 if (! prefix("x"))
74 warn(1001, "x prefix missing on struct.");
75 break;
76 case DEFINED_TYPE:
77 if (strcmp(dcl_base_name(),"Boolean") == 0)
78 if (! prefix("b"))
79 warn(1016, "b prefix needed on %s.", dcl_name());
80 break;
81 }
82 }

Some of the CodeCheck predefined variables and functions which can be
used to detect violations of guidelines similar to the preceding are listed below.
The full list of declarator variables is given in the CodeCheck Reference Manual.

Variable Meaning

dcl_base Set to a constant that identifies the base type of the
declarator (see Reference Manual section 3.2 for
details).

dcl_base_root Type from which the type of dcl_base is derived. If
the type of dcl_base is not a user-defined type,
dcl_base_root has same value as dcl_base.

dcl_base_name() Returns the name of the base type of the declarator.

dcl_base_name_root()The name of type from which type of dcl_base_name
is derived. If the type of dcl_base_name is not a user-
defined type, dcl_base_name_root() returns the same
value as dcl_base_name().

10/17/04 – 69 – CodeCheck

dcl_explicit Set to 1 when a declarator has specifier "explicit".

dcl_extern Set to 1 if the extern storage class is explicitly used
in a declaration.

dcl_from_macro Set to 1 when declarator name is derived from a
macro expansion.

dcl_global Set to 1 if an identifier with external linkage has been
declared. This includes variable, function, and type-
def names.

dcl_hidden Set to 1 if an inner-block declaration hides an outer.

dcl_Hungarian Set to 1 if the Hungarian style is detected (a capital
letter is immediately preceded by a lowercase letter).

dcl_levels Number of levels in the type of this declarator.

dcl_local Set to 1 if a local identifier has been declared.

dcl_member 1 when a union member identifier is declared,

2 when a struct member identifier is declared,

3 when a class member identifier is declared;

(C++ members may be: variables, functions, or
typedef names).

dcl_mutable 1 when an indentifier is declared 'mutable'.

dcl_scope_name() The scope name of current declarator.

dcl_signed Set to 1 if the signed type specifier is explicitly used
in a declaration.

dcl_static Set to 1 when a non-local static identifier has been
declared.

dcl_typedef Set to 1 if a typedef name has been declared.

dcl_unsigned Set to 1 when the type specifier unsigned is used in
a declaration.

op_declarator Any operator found within a declaration.

CodeCheck – 70 – 10/17/04

prefix() Set to 1 if the next prefix in the declarator name
matches the argument string.

suffix() Set to 1 if the next suffix in the declarator name
matches the argument string.

5.1.3 Manifest Constants

Plum recommends several guidelines for defining manifest constants
(TP84:18-19). A constant is “manifest” if its meaning is clearly apparent to the
maintenance programmer. Manifest constants are used to give meaning to num-
bers which otherwise would seem wholly capricious, as may be seen in these
two contrasting examples:

Example 1 — bad, 32 has no manifest meaning:

1 if (index < 32)
2 x[index++] = 0;

Example 2 — good, 32 now has a clear meaning:

1 #define TABLSIZE 32
2 •••
3 •••
4 if (index < TABLSIZE)
5 x[index++] = 0;

 As Plum points out, manifest constants are neither manifest nor constant if
their value is changed midway through a program (by means of an #undef
and/or another #define that redefines the constant). To change a manifest con-
stant in this manner is to create an immediate maintenance problem. Indeed,
there only three valid purposes for an #undef:

1. to override a macro name defined in a standard header,

2. to limit the lexical scope of a macro,

3. to free up space in the compiler’s macro table, if it threatens to overflow.

10/17/04 – 71 – CodeCheck

The Plum guidelines for manifest constants that can be checked by Code-
Check are paraphrased as follows:

a. The names of manifest constants should be spelled in capital letters.

b. The value of manifest constants must never change.

c. If a manifest constant is to be used in more than one file, then it must be
defined in a single header file.

The predefined CodeCheck variables which are used to detect violations of
these guidelines are:

Variable Meaning

lex_not_manifest Set to 1 if a numeric constant other than 0 or 1 is used
in any context other than a macro definition or a com-
ment.

lex_initializer Set to the following when an initializer is found:
1 if the initializer is the integer zero,
2 if the initializer is a non zero integer,
3 if initializer is a boolean literal, true or false(C++
only).
4 if the initializer is a float or double constant,
5 if the initializer is a string literal, and
6 if the initializer is anything else.

pp_lowercase Set to 1 if the macro name in a macro definition is de-
fined with any letters that are lowercase.

pp_stack Set to 1 if a macro is multiply defined.

pp_undef Set to 1 whenever #undef is used.

pp_macro_dup Set to 1 if a macro is defined in more than one file.

pp_macro_conflict Set to 1 if a macro is defined differently in more than
one file.

CodeCheck – 72 – 10/17/04

5.1.4 Lexical Rules for Spacing Operators

C code readability is greatly enhanced by rigorous adherence to a uniform
system for placing spaces around C operators and punctuation marks. Elaborat-
ing somewhat upon the spacing scheme recommended by Plum (TP84:30-32),
CodeCheck recognizes six categories of tokens that need spacing:

1. High precedence operators: all unary operators, and the four member
selection operators (. –> .* –>*). These tokens should never have
space separating them from their operands.

2. Low precedence operators: all assignment operators and the condi-
tional operator pair (? :). These tokens should always have space
separating them from their operands.

3. Commas, semicolons, and colons: these tokens should not be preceded
by a space, and should be followed by a space or newline.

4. Function argument parentheses: the open parenthesis in a function call
should not be separated by whitespace from the function identifier.
There should be consistency within a project as to whether or not
the contents of the parenthetical expression are separated by spaces
from the parentheses.

5. Subscript selection brackets: the open bracket should not be separated
by whitespace from the array to which it refers. There should be
consistency within a project as to whether or not the contents of the
bracket expression are separated by spaces from the brackets.

6. Other: This category encompasses all other operators not listed
above, including arithmetic, bitwise, relational, and logical opera-
tors. These tokens are usually but not necessarily surrounded by
spaces.

The predefined CodeCheck variables with which these stylistic guidelines
may be checked are given below. In designing a set of lexical rules relating to
spacing, the goal should be to enforce consistency to a simple and clearly-stated
spacing scheme.

Variable Meaning

lex_punct_after Set to 1 if a comma or semicolon is not followed by a
whitespace character, a comma, or a semicolon.

10/17/04 – 73 – CodeCheck

lex_punct_before Set to 1 if a comma or semicolon is preceded by a
space.

lin_continues Set to 1 if a line ends before the end of the current ex-
pression.

op_executable Set to 1 if the operator is within executable code,
including initializers.

op_declarator Set to 1 if the operator is within a declaration, not
including initializers.

op_low Set to 1 for operators with low precedence.

op_medium Set to 1 for operators with medium precedence.

op_high Set to 1 for operators with high precedence.

op_prefix Set to 1 for unary prefix operators.

op_infix Set to 1 for binary infix operators.

op_postfix Set to 1 for unary postfix operators.

op_space_before Set to 1 if an operator or punctuation mark is pre-
ceded by a space character.

op_space_after Set to 1 if an operator or punctuation mark is fol-
lowed by a space character.

op_white_before Set to 1 if an operator or punctuation mark is pre-
ceded by whitespace.

op_white_after Set to 1 if an operator or punctuation mark is fol-
lowed by whitespace.

5.1.5 Indentation and the Placement of Braces

The purpose of indentation is to reveal the subordinate nature of blocks of
code, thus greatly enhancing program readability. Plum has summarized the

CodeCheck – 74 – 10/17/04

fundamental rule for indentation which underlies almost all popular formats
(TP84:42):

Each line which is part of the body of a C control structure (if, while, do-
while, for, switch) is indented one tab stop from the margin of its controlling
line. The same rule applies to function, struct, or union definitions, and
aggregate initializers.

CodeCheck provides several predefined variables that allow indentation to
be checked, using Plum’s general guideline as a basis for individualized
schemes.

The fundamental rule stated above leaves unspecified how braces are to be
treated. Oddly enough, the opinions of C programmers on this point seem to be
held with a fervor approaching religious fanaticism. CodeCheck resolves the
problem by providing a command-line option (–B) which, if set, informs Code-
Check that braces are to be considered part of the body of the control structure
(this corresponds to Plum’s own preference, and to the convention used in Pas-
cal). If –B is not set, then braces are not so considered (the Kernighan & Ritchie
style). The –B option only affects the way in which the predefined CodeCheck
variable lin_nest_level is incremented and decremented. Two examples
may serve to illustrate this difference:

Option -B not set (default) lin_nest_level

1 if (test > 0) /* 1 */
2 { /* 1: no indent */
3 k += delta; /* 2 */
4 printf("%d\n", k); /* 2 */
5 } /* 1: no indent */
6 printf("Done"); /* 1 */

Option -B set lin_nest_level

1 if (test > 0) /* 1 */
2 { /* 2: indented brace */
3 k += delta; /* 2 */
4 printf("%d\n", k); /* 2 */
5 } /* 2: indented brace */
6 printf("Done"); /* 1 */

The CodeCheck predefined variable lin_nest_level not only counts the
depth of control structures, it is also incremented and decremented appropri-
ately within function definitions, structure and union definitions, and aggregate
initializers.

10/17/04 – 75 – CodeCheck

Variable Meaning

lin_nest_level Set to the nesting level when the first nonwhite char-
acter of a line is found. How braces are counted in the
nesting level depends on the command line option –
B.

lin_indent_space Set to the number of leading space characters found
before the first non-white non-comment character of a
line.

lin_indent_tab Set to the number of leading tab characters found be-
fore the first non-white non-comment character of a
line.

lin_continuation Set to 1 if a line continues an expression or declara-
tion list from the previous line.

Some standards ask programmers to use only space characters to indent,
while others specify only tab characters. In these cases the CodeCheck variables
lin_indent_space and lin_indent_tab can be used to determine the
amount of indentation and to detect the use of the wrong character to create in-
dentation.

Determining the actual width of the indentation used on any given line of
code is problematic, unless the characteristics of the editor used to display the
code are known. Some editors (e.g. Macintosh and Windows editors) use propor-
tional-width characters, while older editors use single-width characters. Worse,
editors vary greatly in how they treat tab characters: primitive editors simply
generate 8 spaces when a tab is entered, better editors move forward to a fixed
position on the page, while yet others behave in a context-dependent way. In the
face of this chaos, it is simply not possible to find a general formula that calcu-
lates the actual displayed indentation given a sequence of mixed spaces and
tabs.

Here is an example CodeCheck rule that checks indentation within function
definitions, based on the number of leading tab characters in each line. This rule
ignores the indentation of comments, preprocessor directives, and declarations.

CodeCheck – 76 – 10/17/04

 1 int difference;
 2
 3 if (lin_within_function)
 4 if (! (lin_is_comment || lin_preprocessor || lin_dcl_count))
 5 {
 6 difference = lin_nest_level - lin_indent_tab;
 7 switch (difference)
 8 {
 9 case -1:
10 warn(1003, "Indent 1 fewer tab.");
11 break;
12 case 0: // Indentation is correct.
13 break;
14 case 1:
15 warn(1003, "Indent 1 more tab.");
16 break;
17 default:
18 warn(1004, "Indent %d tabs.", difference);
19 break;
20 }

Most standards for the indentation of switch statements call for an appear-
ance like this:

1 switch (ijk)
2 {
3 case 1:
4 break;
5 default:
6 break;
7 }

However, some standards call for more indentation of the contents of the switch,
as in this example:

1 switch (ijk)
2 {
3 case 1:
4 break;
5 default:
6 break;
7 }

CodeCheck assumes that the former example is the norm. To enforce a stan-
dard that calls for more indentation, like the latter example, the following rule
can be used:

 1 #include <check.cch>
 2
 3 int start_switch, // Flags beginning of a switch statement.
 4 switch_depth, // Measures the depth of switch nesting.

10/17/04 – 77 – CodeCheck

 5 diff; // Amount of error in nesting (in tabs).
 6
 7 if (stm_cp_begin == SWITCH)
 8 start_switch = 1; // Detect start of switch
 9
10 if (stm_is_comp == SWITCH)
11 --switch_depth; // Detect end of switch
12
13 if (lin_within_function)
14 if (! (lin_is_comment || lin_preprocessor || lin_dcl_count))
15 {
16 diff = lin_nest_level + switch_depth - lin_indent_tab;
17 switch (diff)
18 {
19 case -1:
20 warn(1003, "Indent 1 fewer tab.");
21 break;
22 case 0: // Indentation is correct.
23 break;
24 case 1:
25 warn(1003, "Indent 1 more tab.");
26 break;
27 default:
28 warn(1004, "Indent %d tabs.", difference);
29 break;
30 }
31 if (start_switch)
32 {
33 ++switch_depth;
34 start_switch = 0;
35 }
36 }

The variables used in this example are:

Variable Meaning

stm_cp_begin When the open curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (see Reference Manual sec-
tion 3.12 for details).

stm_is_comp When the close curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (IF through COMPOUND).

Some standards require that if, else, for, while and do statements contains
compound statements even though the compound statements themselves
contain only single statements or empty statements.

CodeCheck – 78 – 10/17/04

The variable for this purpose is

Variable Meaning

stm_need_comp Set to 1 if a statement contained by if, else, while, do
and for is not a compound statement.

5.1.6 Postfix Problems

For reasons that are impossible to understand, C has always allowed a long
numeric constant to be indicated with a postfixed lowercase ‘el’, as in the constant
pi: 3.1415926535l. It takes great concentration to discern that the last
character in this constant is an ‘el’ and not a ‘one’.

As a matter of style, some project leaders do not permit the use of suffixes at
all, preferring to see explicit casts. The predefined CodeCheck variable which
will detect any suffix attached to a numeric constant is lex_suffix.

Recommendation: Avoid the lowercase ‘el’. Always use an explicit cast or the
uppercase ‘L’ postfix to indicate a long.

Variable Meaning

lex_lc_long Set to 1 if a numeric constant ends with a lower-case
‘el’, indicating a long type.

lex_suffix Set to 1 if a numeric constant is found with any suffix
('F', 'f', 'L', 'l', 'U', or 'u'), or combination of these.

5.1.7 Nonstandard Comments

A small minority of C compilers allow the nesting of comments within com-
ments. This usage is therefore not portable. CodeCheck can recognize both kinds
of nonstandard comments, but treats a nested /* ... */ comment as a syntax error.
To avoid the syntax error, set the -N option on the command-line that invokes
CodeCheck, or have a rule that calls set_option(‘N’,1) at the start of each
module.

10/17/04 – 79 – CodeCheck

If you want CodeCheck to decide that nested comments are acceptable as
soon as the first nested comment is found, use this rule:

1 if (lin_nested_comment)
2 {
3 warn(1234, “Nested comment.”);
4 set_option(‘N’, 1);
5 }

Some compilers have adopted the // comment of C++. These comments are
terminated by the end of the line on which the // was found. Needless to say,
these comments are not portable either. CodeCheck accepts a // comment as
syntactically correct, and excepts without complaint the nesting of // comments
within /* ... */ comments and vice versa.

Recommendations: (a) To block out a section of code that contains comments,
bracket the section with #if 0 at the top and #endif at the bottom. This
will serve to disable the entire section of code, even if it contains comments. (b)
Do not use the // comment format unless you are actually writing C++ code.

CodeCheck provides two predefined variables for detecting nonstandard
comments:

Variable Meaning

lin_nested_comment Set to 1 if a /*...*/ comment is found nested within
another /*...*/ comment.

lex_cpp_comment Set to 1 if a // comment is found.

5.1.8 Magic Numbers

A “magic number” is a number whose meaning is not apparent to the main-
tenance programmer. The example in section 5.1.3 illustrates the use of a magic
number, in this case 32. There are three problems with magic numbers:

1. The meaning of a simple number is almost never apparent from context
alone.

2. It is very difficult to change all occurrences of a particular magic number
when its value must be changed, because not all occurrences of a particular
number will have the same meaning.

CodeCheck – 80 – 10/17/04

3. A magic number adds to a program’s cognitive complexity because it forces
the reader to wonder what the meaning of the number might be.

Recommendation: Either define constants other than 0 and 1 as manifest con-
stant macros (e.g. #define buffno 15) or use a constant declaration with an
initializer (e.g. const short buffno = 15;). If you use a macro for the con-
stant, then place its definition in a single header file. Here is a CodeCheck rule
for detecting magic constants:

1 if (lex_not_manifest)
2 if (lex_initializer < 5 && lex_initializer != 3)
3 warn(99, "Use a const or macro for this magic number!");

Variable Meaning

lex_initializer Set to the following when an initializer is found:
1 if the initializer is the integer zero,
2 if the initializer is a non zero integer,
3 if initializer is a boolean literal, true or false (C++
only),
4 if the initializer is a float or double constant,
5 if the initializer is a string literal, and
6 if the initializer is anything else.

lex_not_manifest Set to 1 if a numeric constant other than 0 or 1 is used
in any context other than a macro definition or a
comment.

5.1.9 Escape Sequences in Character Constants and String Literals

An escape sequence within a character constant or string literal is signaled by
the backslash character: \. The unrestricted use of escape sequences is a frequent
cause of maintenance problems.

Recommendation: for maximum program clarity and maintainability, observe
these rules:

1. To enhance program readability, use macros to encode character constants
that contain escape sequences, as in #define DBLQUOTE '\"'

10/17/04 – 81 – CodeCheck

2. Avoid numeric escape codes if possible; if unavoidable then use a macro
definition to encode the constant, so that the purpose is evident in the name of
the macro.

CodeCheck provides a predefined variable for detecting numeric escapes:

Variable Meaning

lex_num_escape Whenever a non zero numeric escape sequence is
found, the value of this variable is set to the value of
the numeric escape sequence.

CodeCheck – 82 – 10/17/04

5.2 Preprocessor Considerations

5.2.1 Silent Preprocessor Errors

The preprocessor permits programmers to make a variety of mistakes
without complaint. These constitute maintenance problems as well, because
programs containing these errors may appear to compile and execute correctly.

First, many compilers ignore code that appears on the same line as an
#ifdef directive. In the following example the desired debug message will
never be printed:

1 #ifdef DEBUG printf("Now entering recursion...");
2 #endif

Second, even experienced programmers may sometimes place an assignment
operator in a simple substitution macro, as in the following code (which will
compile, although not the way the programmer intended!).

3 #define TOOBIG = 99999

This is a case in which the permissive grammar of the preprocessor actually en-
courages silent but deadly program errors. A similar error occurs when a pro-
grammer inadvertently concludes a macro definition with a semicolon.

Third, some programmers forget (or do not realize) that it is important
always to surround macro formal parameters with parentheses.

There are four predefined CodeCheck variables for detecting these common
preprocessor errors:

Variable Meaning

pp_trailer Set to 1 if a preprocessor line contains any nonwhite
characters after the end of the directive and before the
end of the line.

pp_assign Set to 1 if a macro definition is a simple assignment.

pp_semicolon Set to 1 if a macro definition ends with a semicolon.

pp_arg_paren Set to 1 if a macro formal parameter is used without
being surrounded by parentheses.

10/17/04 – 83 – CodeCheck

5.2.2 The #define/#undef Morass

Any constant which might need to be changed during program development
or maintenance should be “manifest”, which means that it must be clearly appar-
ent to the sight or understanding (TP84:18). Manifest constants are used to give
meaning to numbers which otherwise would seem wholly capricious, as may be
seen in the two contrasting examples in section 5.1.3.

A problem is caused by programmers who have learned that their compiler
treats the #define directives as though they were pushing definitions onto a
stack, and #undef directives as though they were popping these definitions off
the stack. Using #define and #undef in this way is not only an abuse of the
preprocessor, it is also highly non portable. Not all preprocessors are set up in
this way, and the ANSI standard specifically forbids this behavior. The Code-
Check preprocessor adheres to the ANSI standard in this matter, and flags every
apparent pop of the macro stack by setting the predefined variable
pp_unstack (defined below).

There is another way in which #undef can cause tearing of hair and gnash-
ing of teeth, as illustrated in this highly artificial example:

1 #define BLEEP 3
2 #define BLATZ BLEEP + BLEEP
3 #undef BLEEP

What will your compiler see if you now refer to BLATZ? The ANSI standard
is quite clear that BLATZ must be replaced by BLEEP+BLEEP, but some pre-
ANSI compilers will receive 3+3 from their preprocessors. CodeCheck flags this
kind of #undef usage by setting the predefined variable pp_depend.

Lastly, there is the ANSI concept of “benign redefinition”. ANSI has blessed
the idea that macros can be multiply defined (e.g. in several different header
files) as long as the definitions are virtually identical. Two macro definitions are
virtually identical if they are exactly identical after each whitespace sequence
has been replaced by a single space character. Any other redefinition of a macro
will be flagged by an ANSI preprocessor as an error. The CodeCheck pre-
processor allows benign redefinition, but sets the variable pp_benign
whenever a benign redefinition is encountered.

CodeCheck – 84 – 10/17/04

Variable Meaning

pp_benign Set to 1 if a macro is redefined to be virtually identi-
cal to its previous definition.

pp_depend Set to 1 if #undef is used on a macro that is used by
other macros.

pp_stack Set to 1 if a macro is redefined within a module (0 if
the redefinition is benign).

pp_undef Set to 1 whenever #undef is used.

pp_unstack Set to 1 if #undef is used to unstack multiply-de-
fined macros.

Recommendation: define your manifest constants once in a header file, and
leave them defined. Do not depend upon benign redefinition, and do not use
#undef unless absolutely required by overflow of the macro symbol table.

10/17/04 – 85 – CodeCheck

5.3 Maintainability in Declarations

5.3.1 Identifier Name Length

For program clarity and maintainability, it is desirable to use identifier
names that are long enough to express the purpose to which they will be put.
Thus identifier length can and should be used as one indicator of maintain-
ability.

Recommendation: Give each variable a name that succinctly describes its pur-
pose.

Variable Meaning

dcl_ident_length Set to the number of characters in the declared identi-
fier.

Here is a sample CodeCheck program for measuring the average identifier
name length within each module of a project, and flagging any identifiers that
are over 31 or under 3 characters in length. The assignment in line 9 is necessary
because dcl_ident_length is not itself a statistic.

 1 statistic float length;
 2
 3 if (dcl_ident_length)
 4 {
 5 if (dcl_ident_length> 31)
 6 warn(5000, "Identifier exceeds 31 characters!");
 7 if (dcl_ident_length< 3)
 8 warn(5001, "Use a longer name (>3 characters).");
 9 length = dcl_ident_length; // save current length
10 }
11
12 if (mod_begin)
13 reset(length);
14
15 if (mod_end)
16 {
17 meanIDLength = mean(length);
18 printf("Mean identifier length = %g", meanIDLength);
19 }

CodeCheck – 86 – 10/17/04

5.3.2 Declaration Format

Plum (TP84:2) and many others strongly recommend some fairly stringent
guidelines for formatting declarations. The guidelines reported here are those
intended to improve the maintainability of C programs.

1. All variables, functions, and function parameters must have an explicit type
specifier.

2. Declare only one variable, function, tag or member per line of source code.

3. Place an explanatory comment at the end of every declaration line.

The predefined CodeCheck variables which are used to detect violations of
the above guidelines are:

Variable Meaning

dcl_no_specifier Set to 1 if a variable or function declarator has no ex-
plicit type information.

dcl_not_declared Set to 1 if an old-style function parameter is not de-
clared.

dcl_parameter Index of function parameter (1 for first, etc.)

lin_dcl_count Set to the number of identifiers declared on the cur-
rent line (includes tag definitions and function para-
meters).

lin_has_comment Set to 1 if a line has a comment that contains text.

In this example we restrict one variable, function declaration per line, it is
unnecessary to count function parameters. The following rule will exclude
function parameters.

int parmCount;
if (mod_begin) paramCount = 0; // reset
if (dcl_parameter) paramCount++;
if (lin_end) {

if (lin_dcl_count – paramCount > 1) {
warn(99, “Only use one declarator per line.”);

10/17/04 – 87 – CodeCheck

}
paramCount = 0; // reset count at EOL

}

5.3.3 Initialization of External Variables

The ambiguity in C between defining and referencing external declarations
makes possible an extremely bizarre class of bugs, some of which do not man-
ifest themselves until an apparently stable program is substantially revised.
From a programmer’s point of view, the best defense against these bugs is strict
adherence to two guidelines, paraphrased from Harbison & Steele (HS87:80):

1. Define each external variable in only one source file. Indicate that
this is a definition by omitting the extern storage class keyword
from the declaration, and supplying an initializer.

2. Every non-defining declaration of an external variable must use the
extern storage class keyword, and must not have an initializer.

These two rules appear to be the only rules that will simultaneously protect
programmers from bugs introduced by missing or conflicting initializers, and
also ensure portability to non-ANSI compilers that use idiosyncratic methods for
distinguishing defining from referencing declarations. Here is a CodeCheck rule
that checks for adherence to these guidelines:

1 if (dcl_variable)
2 if (dcl_global)
3 {
4 if (dcl_extern && dcl_initializer)
5 warn(8001, "Initializer must be omitted.");
6 else if ((! dcl_extern) && (! dcl_initializer))
7 warn(8002, "Initializer needed here.");
8 }

Variable Meaning

dcl_extern Set to 1 if the extern storage class is explicitly speci-
fied in a declaration.

dcl_global Set to 1 if an identifier with external linkage has been
declared. This includes variable, function, and type-
def names.

dcl_initializer Set to 1 when an initializer is found.

CodeCheck – 88 – 10/17/04

dcl_template Number of C++ function template parameters.

dcl_variable Set to 1 if a variable is declared.

5.3.4 Keywords const, and volatile as Type Modifiers

Many C compilers for DOS and OS/2 (e.g. Microsoft, Borland and Intel) have
special keywords that modify the type of a declarator. These keywords include
near, far, cdecl, pascal, and others. Programmers must be alert to the fact
that these special non-ANSI type modifiers do not act like ordinary type speci-
fiers: they only modify the type of the next declarator or pointer, and have no effect on any
other declarator in the list. For example, in this declaration list

short far p, q;

the declarator p is a far short integer, but q is only a plain short integer. (Except
when compiled by Metaware High C, for which near, far, and huge are type
specifiers. The possibilities for confusion are truly endless.)

A serious ambiguity arises with const and volatile: some compilers ac-
cept these keywords both as ANSI standard type qualifiers and as non-ANSI
type modifiers, depending on context. Consider these four declaration lists:

1 const short a, b; /* ANSI, both are constant */
2 short const c, d; /* ANSI, both are constant */
3 short far const e, f; /* Not ANSI, f is NOT constant */
4 short g, const h; /* Not ANSI, h is constant */

In the first two declaration lists const is used as a type specifier, which ap-
plies to every variable in the declaration list. The third declaration list illustrates
a non-ANSI use of const that is allowed by the Microsoft C compiler. Here the
keyword const is a type modifier (modifying only the next declarator), hence
only e is a far constant short integer, while f is a plain short integer. The fourth
declaration list illustrates another non-ANSI use of const that is allowed by Mi-
crosoft and Intel compilers; in this list only h is constant.

Here is a simple rule that will detect these potentially troublesome usages:

1 if (dcl_cv_modifier)
2 warn(8026, "Non-ANSI usage of const or volatile.");

10/17/04 – 89 – CodeCheck

Variable Meaning

dcl_cv_modifier Set to 1 if the keyword const is used as a non-ANSI
type modifier (similar to near, far, etc.) rather than
as an ANSI type specifier. Set to 2 if the keyword
volatile is used as a non-ANSI type modifier.

C++ has the following special keywords.

dcl_explicit 1 when a declarator has specifier explicit.

dcl_mutable 1 when an indentifier is declared mutable.

CodeCheck – 90 – 10/17/04

5.4 Maintainability at the Project Level

5.4.1 Macro Redefinition

Macros that are defined differently within the several files of a project are at
best a source of great confusion for the maintenance programmer, and at worst
can cause some of the most mysterious program behaviors ever encountered.

Recommendation: If a macro is used in more than one source file of a project,
then place its definition in a single header file. Each macro should have exactly
one definition per project. Be sure to document the definition with a comment.

CodeCheck normally compares each macro definition with every other macro
of the same name defined in other modules. If the current definition differs in
any significant way (i.e. it is not a “benign redefinition” in ANSI terminology),
then CodeCheck emits the warning message C0008 (see Reference Manual,
Section 5.2). The CodeCheck variable pp_macro_conflict is also set at this
time, so that users can trigger their own customized error messages.

CodeCheck provides three predefined variables for working with macro re-
definition problems:

Variable Meaning

pp_macro_dup Set to 1 if a macro is defined in more than one file.

pp_macro_conflict Set to 1 if a macro is defined differently in separate
modules of a project.

prj_conflicts Set to the number of conflicting macro definitions
found in a project.

10/17/04 – 91 – CodeCheck

Chapter 6: Software Metrics

Good management of the production and maintenance of computer software
is at best very difficult. A major part of the problem is caused by difficulties in
measuring such crucial quantities as programmer productivity, quality of code,
and defect rate. Programmer productivity, for example, is often measured in
thousands of lines of code per month, as though all programmers wrote lines in
roughly the same way. Unfortunately for this measure, some write with great
expanses of whitespace, blank lines, and comments, while others produce dense
agglomerations of turgid code. Line for line, the functional capability of the
dense code may be ten times that of the expansive code. Should the programmer
who writes dense code be penalized for this? On the other hand, the expansive
code is almost always easier to maintain, because it is more comprehensible to
the maintenance programmer, so clearly there are trade-offs that must be quanti-
fied.

The emerging discipline of software engineering has produced many experi-
mental metrics which attempt to quantify various aspects of computer code. The
literature on software metrics is still quite sparse compared to the more mature
engineering disciplines, but many good ideas have appeared. A good textbook
on software measurement was finally published in 1986: Software Engineering
Metrics and Models, by Conte, Dunsmore, and Shen. In addition, Grady and
Caswell have written an excellent case history of Hewlett-Packard’s efforts in
software measurement, entitled Software Metrics: Establishing a Company-
Wide Program.

6.1 Program Size

Measures of program size are fundamental to the management of software
engineering, because they provide the units on which many important measures
are based. Productivity, for example, is often expressed in thousand lines of
code per programmer per month, and accuracy can be measured in defects per
hundred lines of code.

Software Engineers have attempted to resolve the problems of the “lines of
code” measure in two ways: (1) tinkering with the definition of a line of code, so

CodeCheck – 92 – 10/17/04

that it (for example) excludes blank and comment lines, as discussed in section
6.1.2, and (2) defining other measures of program size, as discussed in section
6.1.3 (statements), 6.1.4 (tokens) and 6.1.5 (functions). There is, however, a third
way to deal with this problem: use distributions.

6.1.1 Distributions Provide Additional Information

An approach to the problem of defining program size which is both more
meaningful and appropriate from a statistical point of view, is to focus on the dis-
tribution of kinds of lines of code. This approach has not yet appeared in the software
engineering literature, even though it is common enough in the context of
general measurement tools for business management. As an example of this new
focus, one could define the optimum distribution of kinds of lines of code as
10% blank, 30% comment, 30% declarations, and 30% executable code. Now a
program can be described in two complementary ways: total lines and deviation
from the optimum mix of kinds of lines. All of the measures of program size that
can be calculated by CodeCheck can be considered in this manner, by declaring
the CodeCheck variable for the measure to be of the statistic storage class.

6.1.2 Lines of Code

Although there is no consensus within software engineering as to how
exactly to define a line of code, the actual variations concern how to treat: (1)
blank lines, (2) comment lines, (3) lines derived from header files, (4) lines
suppressed by the preprocessor, (5) multiple and/or fragmentary statements,
and (6) non-executable statements. One popular and useful definition (CDS86:35)
reads as follows:

A line of code is any line of program text that is not a comment or a blank
line, regardless of the number of statements or fragments of statements on
the line. This specifically includes all lines containing program headers,
declarations, and executable and non-executable statements.

The above definition is silent with regard to whether lines are to be counted if
they are suppressed or if they come from header files, and these are points on
which reasonable men and women can and do differ.

10/17/04 – 93 – CodeCheck

CodeCheck is flexible enough to handle most variations of the measure for
lines of code. There are 10 predefined variables that describe features of each
line:

Line variables:

Variable Meaning

lin_end Set to 1 when an end-of-line marker has been found (a
newline character or the backslash-newline pair).

lin_dcl_count Set to the number of identifiers declared on the cur-
rent line (includes tag definitions and function para-
meters).

lin_has_comment Set to 1 if a line has a comment that contains text.

lin_has_code Set to 1 if a line contains C code.

lin_header Set to 1 if the current line was obtained from a project
header file by means of #include "filename".
Set to 2 if the current line was obtained from a system
header file by means of #include <filename>.

lin_include_kind 1 if the line includes a project header,

2 if the line includes a system header.

lin_include_name() The file name this line includes.

lin_is_comment Set to 1 if a line has no C code and either contains a
comment or is contained within a comment. The com-
ment line must contain text to qualify as a real com-
ment.

lin_is_exec Set to 1 if a line contains code that is executable.

lin_preprocessor Set to the 1 if a line is a preprocessor directive (i.e. be-
gins with #).

lin_suppressed Set to 1 if compilation of a line has been suppressed
by the preprocessor.

lin_is_white Set to 1 if a line consists entirely of whitespace (tabs &
spaces), or is a comment line without any text.

CodeCheck – 94 – 10/17/04

lin_number Set to the number of the current line, relative to the
start of the current file.

lin_source Set to 1 if the current line was not obtained from a
header file.

In addition to these, CodeCheck has predefined variables that compute total
lines of code at the end of every statement, function, module, and project.

Statement variables:

stm_lines Set to the number of lines in a statement.

Function variables:

Variable Meaning

fcn_total_lines Set to the total number of lines in the definition of a C
function (statistic).

fcn_com_lines Set to the number of pure comment lines in the defini-
tion of a C function (statistic).

fcn_white_lines Set to the number of whitespace lines in the definition
of a C function (statistic).

fcn_exec_lines Set to the number of executable lines in the definition
of a C function (statistic).

Module variables:

mod_total_lines Set to the total number of lines in a module (sta-
tistic).

mod_com_lines Set to the number of pure comment lines in a module
(statistic).

mod_white_lines Set to the number of whitespace lines in a module
(statistic).

mod_exec_lines Set to the number of executable lines in a module
(statistic).

10/17/04 – 95 – CodeCheck

Project variables:

prj_total_lines Set to the total number of lines in a module.

prj_com_lines Set to the number of pure comment lines in a module.

prj_white_lines Set to the number of whitespace lines in a module.

prj_exec_lines Set to the number of executable lines in a module.

A CodeCheck rule which reports the size of a module as measured in lines of
code, using the definition given at the beginning of this section, can be con-
structed in this way:

1 if (mod_begin
2 n = 0;
3
4 if (mod_end)
5 {
6 n = mod_total_lines - mod_com_lines - mod_white_lines;
7 printf("Lines of code in %s: %d", mod_name(), n);
8 }

6.1.3 Statements

A natural way to overcome some of the problems inherent in the definition of
a line of C code is to count executable statements instead. Statements have sev-
eral advantages over lines: there is very little ambiguity as what constitutes a C
statement, and every C statement is a conceptually complete piece of code. Fur-
thermore, the statement is the smallest unit of C programming for which this can
be said.

What little ambiguity there is in the definition of a “statement” concerns two
matters — how to count statements that include other statements, and whether
(or how) to count such non-executable statement-like entities as type definitions,
declarations, initializers, and preprocessor directives. Kernighan & Ritchie
(KR88:236) identify five kinds of executable C statements:

• Expression an expression followed by a semicolon.
• Jump a break, continue, return, or goto statement.

CodeCheck – 96 – 10/17/04

• Compound a list of statements surrounded by braces.
• Selection an if, if-else, or switch statement.
• Iteration a for, while, or do statement.
• Labeled any statement with a label.

Thus Kernighan & Ritchie do not consider type definitions, declarations, and
preprocessor directives as statements at all, and would count this example

1 if (x > y)
2 x = y;
3 else
4 {
5 skip:
6 x = 0;
7 y++;
8 }

as six statements (an if-else statement, a compound statement, three expres-
sion statements, and one labeled statement).

Unfortunately, the Kernighan & Ritchie statement categories are now some-
what out-of-date because C++ has blurred the formerly clear distinction between
declarations and executable statements. For our purposes it seems necessary to
include declarations as a kind of statement. A simple and useful alternative set
of statement categories is as follows:

• Non-executable Local declarations, except local C++ declarations that
have initializers (because they are executable).

• Low-level Expression and jump statements, and local C++ decla-
rations with initializers.

• High-level Compound, selection, and iteration statement and try
blocks (C++ exception handling).

In this scheme an else-clause is considered to be a separate high-level statement,
and labeled statements are not counted twice. Incidentally, CodeCheck considers
a label without an accompanying statement (e.g. just before the last brace of a
function definition) to be a low-level empty statement, equivalent to a labeled
semicolon. Such statements are not allowed by the ANSI standard, but are per-
mitted by virtually every compiler.

To provide sufficient flexibility for the definition of a great variety of size
measures based on counting statements, CodeCheck offers the following prede-

10/17/04 – 97 – CodeCheck

fined variables. Each variable is set to its appropriate value when the end of the
statement (as defined by Kernighan & Ritchie) has been found.

Statement variables:

stm_cases Set to the number of case labels attached to this
statement (includes the default label).

stm_catchs Number of handlers in try block

stm_cp_begin When the open curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (see the Reference Manual,
section 3.12 for details).

stm_end Set to 1 when the end of a statement has been found.

stm_end_tryblock 1 when end of whole try-block is reached .

stm_is_expr Set to 1 if this is an expression statement.

stm_is_jump Set to 1 if this is a jump statement.

stm_is_comp When the close curly brace of a compound statement
has been found, this variable is set to the context of
the compound statement (see the Reference Manual,
section 3.12 for details).

stm_is_select Set to 1 if this is a selection statement.

stm_is_iter Set to 1 if this is an iteration statement.

stm_is_low Set to 1 if this is an expression or jump statement.

stm_is_high Set to 1 if this is a compound, selection, or iteration
statement.

stm_is_nonexec Set to 1 if this is a local declaration. This does not trig-
ger on a local C++ declaration that has an initializer.

stm_labels Set to the number of ordinary labels (not including
case or default labels) attached to this statement.

In some cases, an exception handler may never be reached because the other
handler(s) before it can catch the same exception.

CodeCheck – 98 – 10/17/04

stm_never_caught 1 if an exception handler will never be reached.

In addition to these, CodeCheck has predefined variables that compute total
numbers of statements at the end of every function, module, and project:

Function variables:

fcn_low Set to the number of low-level statements found in
the definition of a C function (statistic).

fcn_high Set to the number of high-level statements found in
the definition of a C function (statistic).

fcn_nonexec Set to the number of non-executable statements found
in the definition of a C function (statistic).

Module variables:

mod_low Set to the number of low-level statements found in a
module (statistic).

mod_high Set to the number of high-level statements found in a
module (statistic).

mod_nonexec Set to the number of non-executable statements found
in a module (statistic).

Project variables:

prj_low Set to the number of low-level statements found in a
project.

prj_high Set to the number of high-level statements found in a
project.

prj_nonexec Set to the number of non-executable statements found
in a project.

A CodeCheck rule which reports the size of a project as measured in state-
ments, using the broadest definition of the term, can be constructed in this way:

1 if (prj_end)

10/17/04 – 99 – CodeCheck

2 {
3 size = prj_low + prj_high + prj_nonexec;
4 printf("Total project statements = %d", size);
5 }

6.1.4 Tokens

A third, natural way to overcome some of the problems inherent in measur-
ing program size in terms of lines of code is to count tokens. This is the method
pioneered by the late Maurice Halstead under the name “Software Science”
(MH77). A token is the smallest unit of text recognized by a compiler, e.g. the
keyword “else”, the operator “+=”, and the punctuation mark “;”. There are,
however, two kinds of tokens in C: preprocessor tokens and lexical tokens. The
two are not always the same, especially in older versions of C. The ANSI stan-
dard has gone a long way towards bringing the two into closer agreement, but
some differences still remain (and will always remain as long as C has a prepro-
cessor). To confuse matters even further, Halstead’s tokens do not exactly coin-
cide with the tokens of the C grammar, nor do all users of Halstead’s metrics
agree on how his definitions are best implemented.

Fortunately, studies have shown that program size as measured by token
counting is not sensitive to minor variations in the details of the definition of to-
kens (CDS86:42). It is always important, of course, to be consistent when making
comparisons of program size, but the actual definition used seems to make very
little difference in the conclusions reached.

Halstead divided all tokens into two somewhat arbitrary classes: operators
and operands. CodeCheck interprets this classification in the C and C++ contexts
as follows: every token that is an identifier, numeric constant, string literal, char-
acter literal, or label is classified as an operand. A “Halstead operator” is any to-
ken that is not an operand. Note that standard C operators, enumerated in Sec-
tions 2.4 and 6.6, are slightly different. For example, every punctuation mark is a
Halstead operator but not a C operator. For those who need measures based on
Halstead operators, CodeCheck provides two versions of each predefined vari-
able for counting operators, one using Halstead’s definition, the other using the
standard C definition. For our purposes the term standard operator will refer to
the standard C operator.

CodeCheck – 100 – 10/17/04

The tokens counted by CodeCheck in this context are preprocessor tokens, i.e. the
tokens seen by the preprocessor before macro expansion takes place. To include
tokens generated by macro expansion in all of these counts, specify –E on the
command line.

CodeCheck provides 16 predefined variables with which line, function, module,
and program size can be measured in terms of tokens.

Line variables:

lin_tokens Set to the number of tokens found in a line of code be-
fore macro expansion.

lin_operators Set to the number of standard C operators found in a
line of code, before macro expansion.

lin_operands Set to the number of operands found in a line of code,
before macro expansion

Statement variables:

stm_operators Set to the total number of standard operators found in
a statement, before macro expansion.

stm_operands Set to the total number of operands found in a state-
ment, before macro expansion.

stm_tokens Set to the total number of tokens found in a statement,
before macro expansion.

Function variables:

fcn_H_operators Set to the total number of Halstead operators found in
a function before macro expansion (statistic).

fcn_uH_operators Set to the number of unique Halstead operators
found in a function before macro expansion (sta-
tistic).

fcn_tokens Set to the total number of tokens found in a function
before macro expansion (statistic).

fcn_operators Set to the total number of standard C operators found
in a function before macro expansion (statistic).

10/17/04 – 101 – CodeCheck

fcn_operands Set to the total number of operands found in a func-
tion, before macro expansion (statistic).

fcn_u_operands Set to the number of unique operands found in a
function, before macro expansion (statistic).

Module variables:

mod_H_operators Set to the total number of Halstead operators found in
a module before macro expansion (statistic).

mod_uH_operators Set to the number of unique Halstead operators
found in a module before macro expansion (sta-
tistic).

mod_tokens Set to the total number of tokens found in a module
before macro expansion (statistic).

mod_operators Set to the total number of standard C operators found
in a module before macro expansion (statistic).

mod_operands Set to the total number of operands found in a mod-
ule, before macro expansion (statistic).

mod_u_operands Set to the number of unique operands found in a
module, before macro expansion (statistic).

Project variables:

prj_H_operators Set to the total number of Halstead operators found in
a project before macro expansion.

prj_uH_operators Set to the number of unique Halstead operators
found in a project before macro expansion.

prj_tokens Set to the total number of tokens found in a project
before macro expansion.

prj_operators Set to the total number of standard C operators found
in a project before macro expansion.

prj_operands Set to the total number of operands found in a project,
before macro expansion.

CodeCheck – 102 – 10/17/04

prj_u_operands Set to the number of unique operands found in a pro-
ject, before macro expansion.

6.1.5 Functions

A fourth, natural way to overcome some of the problems inherent in measur-
ing program size in terms of lines of code is to count functions and macros
(CDS86:42). Of all the measures presented here, this is the simplest and least am-
biguous.

CodeCheck provides two predefined variables for counting functions at the
module and project level:

Variable Meaning

mod_functions Set to the number of functions defined in a module
(statistic).

mod_macros Set to the number of macros defined in a module
(statistic).

prj_functions Set to the number of functions defined in a project.

prj_macros Set to the number of macros defined in a project.

10/17/04 – 103 – CodeCheck

6.2 Logical Complexity

Measures of logical complexity are extremely important tools for ensuring
program maintainability, on the universally recognized principle that logically
complex code is very difficult to understand and maintain. Contrary to popular
belief, complicated problems do not need logically complex programs for their
solution. Indeed, it can be argued that logical complexity in programs is caused
by lack of understanding of the problem on the part of the programmer: the bet-
ter he or she understands the problem, the simpler and more elegant the pro-
gram produced to solve it. One can argue that every milestone in the history of
computer programming has been a technique or concept that reduces program
complexity: symbolic variables, formula translation, formatted I/O, structured
control statements, recursive functions, structured data, modular programs, and
object-oriented programming.

Oddly enough, most measures of logical complexity are not themselves
complex. Popular metrics such as decision count (section 6.2.1) and mean logical
depth (section 6.2.3) are easy to calculate, while McCabe’s cyclomatic complexity
number only looks complicated — it is actually easily calculated from the deci-
sion count.

6.2.1 Decision Count

The flow of control in a C function proceeds sequentially through its state-
ments until it is interrupted by a goto statement, a function call, or a binary deci-
sion point, a statement from which control passes to one of two choices. Goto
statements and function calls are not binary decision points, because each passes
control to exactly one choice. A switch statement is not in itself a binary decision
point, but each case statement is. Thus every C statement either leads to exactly
one statement or is a binary decision point (the switch statement leads to the first
case in the switch).

A simple measure for the logical complexity of a function can be constructed
by counting the number of binary decision points in the function. This is called
the decision count for the function.

CodeCheck provides predefined variables for counting decisions at the func-
tion, module, and project levels.

CodeCheck – 104 – 10/17/04

Variable Meaning

fcn_decisions Set to the number of binary decision points in a func-
tion (statistic).

mod_decisions Set to the number of binary decision points in a mod-
ule (statistic).

prj_decisions Set to the number of binary decision points in a pro-
ject.

Here is an example set of CodeCheck rules that alerts the user to functions
with more than 12 decisions, and calculates the decisions per function rate for the
entire project:

 1 float dpf; /* decisions per function */
 2
 3 if (fcn_decisions > 12)
 4 warn("This function may be too complex.");
 5
 6 if (prj_end)
 7 {
 8 dpf = (1.0*prj_decisions) / prj_functions;
 9 printf("Decisions per function rate = %g\n", dpf);
10 }

6.2.2 McCabe Cyclomatic Complexity

The structure of an algorithm is often depicted by a directed graph called a
flowchart or flowgraph. If the flowgraph is abbreviated so that it describes only
test nodes and branches between nodes, then it represents the logic structure of
the algorithm (CDS86:60). Consider the algorithm for computing the greatest
common divisor of two positive integers, for example. The following C code im-
plements this simple algorithm:

 1 long gcd(long n, long d)
 2 {
 3 register long temp;
 4

10/17/04 – 105 – CodeCheck

 5 while(d)
 6 {
 7 temp = d;
 8 d = n % d;
 9 n = temp;
10 }
11 return n;
12 }

The flowgraph for this algorithm looks like this:

Start

Returnd > 0

temp = d

d = n % d

n = temp

However, three nodes of this flowgraph are not involved with branching. To ob-
tain its logic structure we collapse these extraneous nodes, which yields a much
more simple graph:

CodeCheck – 106 – 10/17/04

By constructing the logic structure graph for this function we have revealed
its logical flow in its starkest, most visible form. This is the purpose of the logic
structure graph. It is intuitively clear that the logical complexity of a function
should be related in some way to the structural richness of this graph. In 1976
McCabe proposed a measure for this structural richness that has been
universally accepted.

McCabe’s cyclomatic complexity measure for a C function or program is derived
from simple properties of the logic structure graph of the function. This measure
is defined as follows. First connect all exit nodes to the entry node. Then
calculate

edges – nodes + 1

where “edges” are lines that connect boxes, and “nodes” are boxes that emit or
receive edges.

In the greatest common divisor algorithm, described above, McCabe’s mea-
sure is easily calculated from the logic structure graph in the above figure as: 4
edges – 3 nodes + 1 = 2. It is interesting to note that the same result is found if one
calculates the McCabe measure on the flowgraph itself: 7 edges –6 nodes + 1 = 2.
That this is true for any algorithm reflects a fundamental principle: the logical
complexity of an algorithm does not change when non-decision nodes are in-
serted or removed.

The simplest possible algorithm has a McCabe measure of 1, and McCabe
considered that cyclomatic complexities in excess of 10 were an indication of
overly complex code. One way to understand cyclomatic complexity is this: first
imagine that all exit nodes are connected to the entry node. Then count the num-
ber of edges that must be removed from the logic structure graph to eliminate all
circuits (ignore arrow directions when looking for circuits). The number of edges
removed is the cyclomatic complexity.

There is a remarkable relationship between McCabe’s cyclomatic complexity
and the decision count metric defined in the previous section: McCabe’s number
for any algorithm is exactly one more than its decision count. This occurs because each
binary decision point contributes exactly two edges and one node, thus increas-
ing the McCabe measure by one.

Because of the simple relationship between McCabe’s measure and decision
count, no additional CodeCheck variables are needed to calculate the McCabe
measure.

10/17/04 – 107 – CodeCheck

6.2.3 Logical Depth

The “logical depth” of a statement is its logical nesting level. Logical nesting
results from decisions, i.e. if, else, for, while, switch and do statements.
The following code fragment, taken from a full-pivot matrix inversion routine,
illustrates a nesting depth of 5. Note that there are a total of 12 statements in
these 14 lines, consisting of 5 expression statements, 2 iteration statements, 3
selection statements, and 2 compound statements.

 /* DEPTH */
 1 max = 0; /* 0 */
 2 for (j = 0; j < dim; j++) /* 0 */
 3 if (notused[j]) /* 1 */
 4 for (k = 0; k < dim; k++) /* 2 */
 5 if (notused[k]) /* 3 */
 6 { /* 4 */
 7 temp = fabs(A[j,k]); /* 4 */
 8 if (max <= temp) /* 4 */
 9 { /* 5 */
10 row = j; /* 5 */
11 col = k; /* 5 */
12 max = temp; /* 5 */
13 } /* 5 */
14 } /* 4 */

The complexity caused by nesting may be understood by trying to answer this
question: when all the looping is done, what are row, col and max set to?
Clearly, the greater the depth the harder it is to figure out the answer to such
questions.

Functions, which consist of many statements, have several kinds of depth
measures. Two measures of obvious utility are maximum depth and average depth.
Since these are statistical quantities, CodeCheck provides a predefined variable
from which these and other statistical descriptors can be derived.

Variable Meaning

stm_depth Set to the logical depth of a statement, i.e. its nesting
level within if-, for-, while-, and do-statements.

CodeCheck – 108 – 10/17/04

Here is an example of a set of CodeCheck rules that calculates a histogram of
maximum depth for the functions in each module:

 1 statistic float depth, maxdepth;
 2 int max;
 3
 4 if (stm_end) /* Needed because stm_depth */
 5 depth = stm_depth; /* is not a statistic. */
 6
 7 if (fcn_begin) /* Initialize in */
 8 reset(depth); /* every function */
 9
10 if (fcn_end)
11 maxdepth = maximum(depth);
12
13 if (mod_begin) /* Initialize in */
14 reset(maxdepth); /* every module */
15
16 if (mod_end)
17 {
18 max = maximum(maxdepth);
19 histogram(maxdepth, 0, max, max);
20 }

10/17/04 – 109 – CodeCheck

6.3 Code Density

Like the measures of logical complexity discussed in the previous section,
measures of code density are important tools for ensuring program maintain-
ability, on the realistic principle that dense code is very difficult to understand
and maintain. Intuitively speaking, computer code is dense if it contains a lot of
material per unit of size. Size has been discussed in section 6.1 above, but what
about “material”? There are many possibilities: number of operators, number of
operands, tokens per line, operators per hundred tokens, etc., and these may be
weighted according to their cognitive ambiguity or rarity (generally speaking,
the more ambiguous or rare an object, e.g. a comma operator, the more it should
contribute to the density measure). The subsections that follow describe these
and other useful ideas for measuring code density.

Code density may be interesting as an overall measurement of a C program,
but it can also serve another purpose, which will be even more useful for many
programmers. Just as indicators of code complexity can be used to alert the pro-
grammer to functions that are overly complex, an indicator of code density can
be used to identify lines or statements that are overly dense. Thus a kind of early
warning system can be built by writing a CodeCheck rule file that contains a va-
riety of alerts of this type.

6.3.1 Two Examples of Dense Code

This C function, adapted from KR88:49, illustrates the value of a warning
based on density:

1 /* getbits: get n bits from position p */
2 unsigned getbits(unsigned x, int p, int n)
3 {
4 return (x>>(p+1-n))&~(~0<<n);
5 }

This routine has just one executable statement. How long will it take a mainte-
nance programmer to understand how it works? Five minutes? Ten? Most of the
difficulty comes from the uncommented use of so many operators, five of which
are rarely-seen bitwise operators. The calculation should be broken down into
intermediate steps — this will not only help the reader to parse the expression
correctly, it will also provide space in which to place comments. CodeCheck

CodeCheck – 110 – 10/17/04

rules for any of the following three excess-density conditions would have
flagged this line:

a) operators per line > 5,
b) tokens per line > 15,
c) operators per operand > 4/3.

Here is a preferable version, which uses register variables to achieve a speed
at least as good as the original, if not better (the actual speed will depend on the
amount of optimization performed by the compiler):

 1 #define RIGHTBITS(n) (~(~0 << n)) /* Mask for right n bits */
 2
 3 /* getbits: get n bits from position p (counting p from right) */
 4
 5 unsigned getbits(unsigned x, int p, int n)
 6 {
 7 register unsigned margin, /* # unwanted bits on right */
 8 shifted, /* result after rt shifting */
 9 mask; /* mask for the desired bits */
10
11 margin = p + 1 - n; /* size of the right-hand margin */
12 shifted = x >> margin; /* shift wanted bits to the right */
13 mask = RIGHTBITS(n); /* create a mask for right n bits */
14 return (shifted & mask); /* mask out all unwanted bits */
15 }

Each line of the new version has a lower density by almost any measure, and
none would be flagged by the excess-density conditions listed above. In
addition, the extra space gained at the end of the new lines allows room for brief
comments, which, at least in this example, are crucial.

Here is another example of overly dense and abstract code, also adapted
from K&R88. This routine implements the library function strcpy:

1 /* strcpy: copy string at t to s. */
2
3 void strcpy(char *s, char *t)
4 {
5 while (*s++ = *t++)
6 ;
7 }

The apparent elegance of this routine is only superficial — as a programming
puzzle it is superb, but as a working routine it exhibits almost every cognitive
difficulty that a C routine can present. To fully comprehend how it works, the
reader must unnecessarily go through a long series of analytical steps, each re-
quiring insight, perceptiveness, and precision. First, the reader must perceive

10/17/04 – 111 – CodeCheck

that the condition has an assignment operator (=), not an equality test (==). Sec-
ond, the reader must separate the lvalue (*s) from the increment operator (++),
and figure out whether the increment is applied to *s or to s. Third, the rvalue
must be understood: it looks just like the lvalue, but it yields a character, not an
address of a character, so it is actually different. Without perceiving this differ-
ence no sense can be made of the expression. Fourth (and last), the reader must
distinguish between the action taken by the expression and the test for termina-
tion of the while statement. The termination test is only understood when the
reader makes the identification between logical false and the end-of-string marker.

Kernighan & Ritchie admit that this routine is indeed cryptic at first sight.
However, they suggest that it uses an idiom that should be mastered due to its
notational convenience and frequent use (KR88:106). Is convenience a good sub-
stitute for clarity? Very few quality control managers would agree.

6.3.2 Operational Density

Any metric for code density that uses an operator count in the numerator is a
measure of operational density. The rationale for making operators the basis for
measuring code density is that it is the operators that encode actions: too many
actions in too small a space is not good programming style. However, there are
many ways to use operator counts in the construction of density metrics. Code-
Check offers a variety of predefined variables with which to calculate operator-
based density. First, here are some of the many possible metrics for operational
density:

operators per executable line Used primarily to identify lines that ought to
be broken down into several simpler lines.

operators per expression Used primarily to identify expressions that
ought to be simplified.

operators per hundred tokens Can be used to quantify the overall density of
functions, modules, and projects.

operators per operand Can be used to quantify the “abstractness” of
expressions, lines, statements, and functions.

These and other metrics can be constructed with the following CodeCheck
predefined variables.

CodeCheck – 112 – 10/17/04

Expression variables:

Variable Meaning

exp_operators Set to the number of standard C operators found in an
expression, before macro expansion.

exp_operands Set to the number of operands found in an expres-
sion, before macro expansion.

exp_tokens Set to the number of tokens found in an expression,
before macro expansion.

Line variables:

lin_has_code Set to 1 if a line contains C code.

lin_is_exec Set to 1 if a line contains code that is executable.

lin_operators Set to the number of standard C operators found in a
line of code, before macro expansion.

lin_operands Set to the number of operands found in a line of code,
before macro expansion

lin_tokens Set to the number of tokens found in a line, before
macro expansion.

Statement variables:

stm_operators Set to the number of standard C operators found in a
statement, before macro expansion.

stm_operands Set to the number of operands found in a statement,
before macro expansion.

stm_tokens Set to the number of tokens found in a statement, be-
fore macro expansion.

Function variables:

fcn_operators Set to the number of standard C operators found in a
function before macro expansion (statistic).

10/17/04 – 113 – CodeCheck

fcn_operands Set to the number of operands found in a function, be-
fore macro expansion (statistic).

fcn_tokens Set to the number of tokens found in a function, be-
fore macro expansion (statistic).

Module variables:

mod_operators Set to the number of standard C operators found in a
module before macro expansion (statistic).

mod_operands Set to the number of operands found in a module, be-
fore macro expansion (statistic).

mod_tokens Set to the number of tokens found in a module before
macro expansion (statistic).

Project variables:

prj_operators Set to the number of standard C operators found in a
project before macro expansion.

prj_operands Set to the number of operands found in a project, be-
fore macro expansion.

prj_tokens Set to the number of tokens found in a project before
macro expansion.

Here is a sample CodeCheck rule set that calculates five of the operator-
based density metrics mentioned above. Note the use in line 18 of multiplication
by 1.0 to achieve the effect of casting to float (casts are not permitted in
CodeCheck rules).

 1 float oo_ratio, ops_per_token;
 2
 3 if (lin_is_exec)
 4 if (lin_operators > 5)
 5 warn("This line is too dense.");
 6
 7 if (exp_operators > 5)
 8 warn("This expression is too dense.");
 9
10 if (lin_operands > 2)
11 if (2*lin_operators > 3*lin_operands)
12 warn("This line is too abstract.");

CodeCheck – 114 – 10/17/04

13
14 if (fcn_end)
15 {
16 printf("Characteristics of %s:\n\n", fcn_name());
17
18 oo_ratio = (1.0*fcn_operators)/fcn_operands;
19 printf(" Operator/operand ratio = %g\n", oo_ratio);
20
21 ops_per_token = (100.0*fcn_operators)/fcn_tokens;
22 printf(" Operators per hundred tokens = %g\n, ops_per_token);
23 }

6.3.3 A Weighted Index for Operational Density

Not all operators are equal with respect to frequency of use and familiarity to
programmers. Many excellent C programmers can easily spend a career without
ever using the comma operator, for example. Furthermore, some operators, like
% and >>, are unreliable, due to being somewhat machine-specific. Thus it
makes sense to weight operators in an operational density metric according to
general familiarity and reliability, on the grounds that the more the reader has to
think about an operator and how it behaves, the more it contributes to the
overall density of the code.

A simple weighting scheme for operators can be constructed by assigning in-
teger weights to each category of operator. Then every time an operator is found,
add its weight to the operator count. The result is a weighted index instead of a
count. For greater precision, floating-point weights can be used. The crucial step,
however, is the initial choice of weights. Here is an example:

Operators Weight Justification

+ – * / ! 1 These are the best known operators.

[] . 1 Very common.

< <= > >= 1 Very common.

!= |= 2 Easily confused.

+= -= *= /= 2 Require a little additional thought.

++ -- 3 Need thought, and they resemble + and -.

10/17/04 – 115 – CodeCheck

= == 3 Notoriously ambiguous.

&& || 2 Common, but resemble & and |.

& | ~ << 3 Not often used.

>> >>= % %= 5 Machine-specific.

* & -> 3 Pointer operations require thought.

sizeof 2 Argument is an unevaluated expression.

(type name) 2 Casts need abstract declarators.

^ ?: ^= 3 Requires thought.

, 5 The comma is very difficult to recognize.

Managers, software engineers, and researchers will differ on how to assign
weights to operators. To allow individual weighting choices, CodeCheck pro-
vides a separate predefined variable for every distinct operator and punctuation
mark (as we have seen before, in the case of the Halstead metrics, one person’s
punctuation mark may be another person’s operator). These variables are set af-
ter all macros have been expanded. For the complete list of all operator
variables, see the CodeCheck Reference Manual, section 3.9.

Here is a sample CodeCheck rule set that calculates a weighted index for op-
erational density at the module level, using the weights suggested earlier. It de-
fines operational density as weighted operators per executable line.

 1 float index; // The weighted index */
 2
 3 if (mod_begin) // Initialize at start of each module
 4 index = 0;
 5
 6 if (op_add || op_subt || op_mul || op_div || op_log_not)
 7 index += 1.0;
 8
 9 if (op_subscript || op_call || op_member)
10 index += 1.0;
11
12 if (op_less || op_less_eq || op_more || op_more_eq)
13 index += 1.0
14
15 if (op_not_eq || op_or_assign)
16 index += 2.0;

CodeCheck – 116 – 10/17/04

17
18 if (op_add_assign || op_sub_assign)
19 index += 2.0;
20
21 if (op_mul_assign || op_div_assign)
22 index += 2.0;
23
24 if (op_pre_incr || op_pre_decr
25 || op_post_incr
26 || op_post_decr)
27 index += 3.0;
28
29 ••• // more index calculations
30
31 if (op_comma)
32 index += 5.0;
33
34 if (mod_end) /* Print at end of each module */
35 {
36 index /= mod_exec_lines;
37 printf("Module %s:\n", mod_name());
38 printf(" operational density = %g\n, index);
39 }

10/17/04 – 117 – CodeCheck

Chapter 7: CodeCheck Rule Sets

7.1 Verifying POSIX.1 compliance

The rule file shown here is designed to flag non-POSIX features that are
likely to occur in C programs written for Berkeley Unix (BSD version 4.3).

Rule file bsd43.cc

/* BSD43.cc

Copyright (c) 1992-95 by Abraxas Software. All rights reserved.
==

Purpose: Flags BSD 4.3 features that are not POSIX.1 conforming.
Author: Loren Cobb.
Revision: 12 October 1994.

 16, March, 1994. Mask the message for the functions
 which are class member functions and have the same
 names in the list.

Format: Monospaced font with 4 spaces/tab.
==

Abstract:

These CodeCheck rules generate warning messages when BSD 4.3 features
are used that are not POSIX conforming. If possible, these messages
will suggest the appropriate POSIX feature to use.

The features flagged in these rules are the ones that I know about as
of the date on this rule file. If you know of others that ought to be
flagged, please fax me the details at your earliest convenience. The
Abraxas fax number is 503-244-8375. Many thanks in advance!

Warning Codes:

2000 Precede all headers with #define _POSIX_SOURCE.
2001 Replace function <BSD function> with <POSIX function>.
2002 Function <BSD function> has no POSIX equivalent.
2003 Function <BSD function> is not needed in POSIX.
2004 POSIX requires #include <POSIX header> for <function>.
2005 Replace <BSD header> with <POSIX header>.
2006 Replace <BSD macro> with <POSIX macro>.
2007 If you need an audible alarm, use \a instead of \07.
2008 Replace tag <BSD name> with <POSIX name>.

Suggested Actions:

CodeCheck – 118 – 10/17/04

2000 The macro _POSIX_SOURCE must be defined for POSIX headers to be
read correctly. Define this macro at the top of every source file.

2001 Look up the replacement function in a POSIX reference - the return
type and some arguments may differ from the BSD function, and a
POSIX header may need to be included.

2002 You will need to hand-code a replacement function.
2003 No call to this function is needed in a standard POSIX environment.
2004 Insert the appropriate #include after #define _POSIX_SOURCE.
2005 Change the name of the BSD header to the appropriate POSIX header.
2006 Change the name of the BSD macro to the appropriate POSIX macro.
2007 If you need an audible alarm, change \07 to \a in the string.
2008 Change the name of the BSD tag to the appropriate POSIX tag.

Useful References:

Horton, Mark R. (1990) "Portable C Software." Published by Prentice-Hall,
Englewood Cliffs, NJ 07632, USA.

IEEE (1988) "IEEE Standard Portable Operating System Interface for Computer
Environments 1003.1-1988." Published by IEEE, 345 East 47th Street,
New York, NY 10017, USA.

Lewine, Donald A. (1991) "POSIX Programmer's Guide." Published by O'Reilly &
Associates, 632 Petaluma Avenue, Sebastopol, CA 95472, USA.

Zlotnick, Fred (1991) "The POSIX.1 Standard." Published by Benjamin/Cummings,
390 Bridge Parkway, Redwood City, CA 94065, USA.

==
*/

#define NEED_POSIX 2000
#define REPLACE_FCN 2001
#define NO_EQUIV 2002
#define NOT_NEEDED 2003
#define INCLUDE 2004
#define REPLACE_HDR 2005
#define REPLACE_CON 2006
#define ALARM 2007
#define REPLACE_TAG 2008

#define REPLACE(fname,gname) if (strcmp(idn_name(),fname) == 0) \
{
\
warn(REPLACE_FCN, "Replace " fname " with " gname ".");

\
++items_flagged;
\
}

#define REWRITE(fname) if (strcmp(idn_name(),fname) == 0)
\

{
\

10/17/04 – 119 – CodeCheck

warn(NO_EQUIV, "Function " fname " has no POSIX equivalent."); \
++items_flagged;
\
}

#define DELETE(fname) if (strcmp(idn_name(),fname) == 0)
\

{
\
warn(NOT_NEEDED, "Function " fname " is not needed in POSIX."); \
++items_flagged;
\
}

#define CALLED(fname) (strcmp(idn_name(),fname) == 0)

int posix_needed, // 1 if macro _POSIX_SOURCE has not yet been defined.
unistd_needed, // 1 if header unistd.h has not yet been included.
items_flagged; // Number of non-POSIX features found in this

module.

int sys_dir_included, // 1 if header sys/dir.h has been #included.
sys_time_included, // 1 if header sys/time.h has been #included.
time_included, // 1 if header time.h has been #included.
unistd_included; // 1 if header unistd.h has been #included.

if (mod_begin)
{
posix_needed = 1;
unistd_needed = 1;
items_flagged = 0;
sys_dir_included = 0;
sys_time_included = 0;
time_included = 0;
unistd_included = 0;
}

if (pp_macro)
if (strcmp(pp_name(), "_POSIX_SOURCE") == 0)

posix_needed = 0;

if (header_name())
{
if (posix_needed)

{
warn(NEED_POSIX, "Precede all headers with #define _POSIX_SOURCE");
posix_needed = 0;
++items_flagged;
}

if (unistd_needed)
{
if (strcmp(header_name(), "unistd.h") != 0)

CodeCheck – 120 – 10/17/04

warn(INCLUDE, "POSIX recommends #include <unistd.h> before this
line.");

unistd_needed = 0;
++items_flagged;
}

if (strcmp(header_name(),"sys/dir.h") == 0)
{
warn(REPLACE_HDR, "Replace <sys/dir.h> with <dirent.h>."); //

MRH:328
++items_flagged;
}

else if (strcmp(header_name(),"sys/param.h") == 0)
{
warn(REPLACE_HDR, "Replace <sys/param.h> with <unistd.h>.");
++items_flagged;
}

else if (strcmp(header_name(),"sys/time.h") == 0)
{
warn(REPLACE_HDR, "Replace <sys/time.h> with <time.h>.");
++items_flagged;
sys_time_included = 1;
}

else if (strcmp(header_name(),"unistd.h") == 0)
{
unistd_included = 1;
unistd_needed = 0;
}

else if (strcmp(header_name(),"varargs.h") == 0)
{
warn(REPLACE_HDR, "Replace <varargs.h> with <stdarg.h>.");
++items_flagged;
}

}

if (idn_function&&!idn_member)
{
 REPLACE("alloca" , "malloc"
) // DAL:566
else REPLACE("bcmp" , "strncmp")
// DAL:566
else REPLACE("bcopy" , "strncmp"
) // DAL:566
else REPLACE("cuserid" , "getlogin or getpwuid")
// DAL:249
else REPLACE("ecvt" , "sprintf")
// DAL:566
else REPLACE("fcvt" , "sprintf")
// DAL:566
else REPLACE("flock" , "fcntl"
) // DAL:566
else REPLACE("gcvt" , "sprintf")
// DAL:566
else REPLACE("getdtablesize" , "sysconf"
) // DAL:566

10/17/04 – 121 – CodeCheck

else REPLACE("getpw" , "getpwent")
// DAL:566
else REPLACE("gettimeofday" , "localtime and time")
// DAL:566
else REPLACE("getwd" , "getcwd"
) // DAL:566
else REPLACE("index" , "strchr"
) // DAL:566
else REPLACE("initstate" , "srand"
) // DAL:566
else REPLACE("ioctl" , "[see a POSIX.1 book]")
// DAL:566
else REPLACE("killpg" , "kill"
) // DAL:566
else REPLACE("mknod" , "mkdir or mkfifo")
// DAL:566
else REPLACE("mktemp" , "tmpnam"
) // DAL:487
else REPLACE("pclose" , "close"
) // DAL:566
else REPLACE("popen", "pipe, fdopen, fork, system, or wait")
// DAL:566
else REPLACE("random" , "rand"
) // DAL:566
else REPLACE("rindex" , "strrchr"
) // DAL:567
else REPLACE("scandir" , "readdir, malloc, qsort")
// DAL:567
else REPLACE("seekdir" , "opendir, readdir")
// DAL:567
else REPLACE("setbuffer" , "setvbuf"
) // DAL:567
else REPLACE("setitimer" , "alarm"
) // DAL:567
else REPLACE("setlinebuf" , "setvbuf"
) // DAL:567
else REPLACE("setregid" , "setgid and setegid")
// DAL:567
else REPLACE("setreuid" , "setuid and setuegid")
// DAL:567
else REPLACE("setstate" , "srand"
) // DAL:567
else REPLACE("sigblock" , "sigprocmask"
) // DAL:567
else REPLACE("signal" , "sigaction")
// DAL:420
else REPLACE("sigpause" , "sigsuspend"
) // DAL:567
else REPLACE("sigsetmask" , "sigprocmask"
) // DAL:567
else REPLACE("sigvec" , "sigpending"
) // DAL:567
else REPLACE("srandom" , "srand"
) // DAL:567
else REPLACE("system" , "[see a POSIX.2 book]")
// DAL:470

CodeCheck – 122 – 10/17/04

else REPLACE("timezone" , "localtime")
// DAL:567
else REPLACE("utimes" , "utime"
) // DAL:567
else REPLACE("valloc" , "malloc"
) // DAL:567
else REPLACE("vfork" , "fork"
) // DAL:567
else REPLACE("vhangup" , "tcsetattr")
// DAL:567
else REPLACE("wait3" , "waitpid"
) // DAL:567

else REWRITE("bzero") // DAL:566
else REWRITE("cabs") // DAL:566
else REWRITE("ffs") // DAL:566
else REWRITE("gamma") // DAL:566
else REWRITE("getpass") // DAL:566
else REWRITE("hypot") // DAL:566
else REWRITE("insque") // DAL:566
else REWRITE("isascii") // DAL:566
else REWRITE("j0") // DAL:566
else REWRITE("j1") // DAL:566
else REWRITE("jn") // DAL:566
else REWRITE("remque") // DAL:567
else REWRITE("y0") // DAL:567
else REWRITE("y1") // DAL:567
else REWRITE("yn") // DAL:567

else DELETE("endgrent") // DAL:566
else DELETE("endpwent") // DAL:566
else DELETE("nice") // DAL:566
else DELETE("setgrent") // DAL:567
else DELETE("setpwent") // DAL:567

if (CALLED("asctime") && sys_time_included && (! time_included))
// DAL:217

{
warn(INCLUDE, "POSIX requires #include <time.h> for function asctime."

);
++items_flagged;
}

}

if (identifier("direct")) // MRH:328
if (sys_dir_included)

{
warn(REPLACE_TAG, "Replace tag \"direct\" with \"dirent\".");
++items_flagged;
}

if (macro("L_INCR")) // DAL:351
{
warn(REPLACE_CON, "Replace L_INCR with SEEK_CUR.");
++items_flagged;
}

10/17/04 – 123 – CodeCheck

if (macro("L_SET")) // DAL:351
{
warn(REPLACE_CON, "Replace L_SET with SEEK_SET.");
++items_flagged;
}

if (macro("L_XTND")) // DAL:351
{
warn(REPLACE_CON, "Replace L_XTND with SEEK_END.");
++items_flagged;
}

if (macro("O_NDELAY")) // DAL:366
{
warn(REPLACE_CON, "Replace O_NDELAY with O_NONBLOCK.");
++items_flagged;
}

if (macro("SIGIOT")) // DAL:211
{
warn(REPLACE_CON, "Replace SIGIOT with SIGABRT.");
++items_flagged;
}

if (lex_num_escape == 7) // DAL:377
{
warn(ALARM, "If you need an audible alarm, use \\a instead of \\07.");
++items_flagged;
}

if (mod_end)
{
printf("\n*** %d non-POSIX BSD features were found in module %s ***\n\n",

items_flagged, mod_name());
}

CodeCheck – 124 – 10/17/04

7.2 Compliance with Coding Standards

Almost every company that engages in C software development has its own
internal standards for programmers. The rule file that follows encodes the actual
standards used by one such company. This rule file is used both by individual
programmers and by team leaders to monitor compliance with the company’s
standards.

Rule file sample.cc

// Copyright (c) 1988-93 by Abraxas Software. All rights reserved.

// This file can be used by company programmers to monitor
// their compliance with corporate standards.

// The warnings are intended to be seen in the context of
// a list file. Use: check myproject.ccp -Rsample -L

// Warning codes: 1000 lexical
// 2000 keyword
// 3000 preprocessor
// 4000 declaration
// 5000 general

// These rules may serve as a basis for customizing your
// own set of company standards for C code production.

#include <check.cch>

/********** Lexical Rules **********/

if (lex_nonstandard)
warn(1001, "Nonstandard character.");

if (lex_unsigned || lex_float)
warn(1002, "Do not use this suffix.");

if ((lex_radix == 8) || (lex_radix == 16))
warn(1003, "Do not use octal or hex constants.");

if (lex_str_length > 509)
warn(1005, "String literal too long for ANSI C.");

if (lex_str_trigraph)
warn(1006, "ANSI C will recode the trigraph in this string.");

if (lex_nested_comment)
warn(1007, "Do not nest comments.");

if (op_low)

10/17/04 – 125 – CodeCheck

{
if (! op_white_before)

warn(1008, "Put space before operator %s.", token());
if (! op_white_after)

warn(1008, "Put space before operator %s.", token());
}

/********** Keyword rules **********/

if (keyword("int"))
if (! lex_macro_token)

warn(2001, "Use INTEGER, short, or long.");

if (keyword("register"))
if (! lex_macro_token)

warn(2002, "Use the REGISTER macro here.");

if (keyword("volatile"))
warn(2003, "The \'volatile\' keyword is not portable.");

/********** Preprocessor Rules **********/

if (pp_sub_keyword)
warn(3001, "Do not substitute preprocessor keywords.");

if (pp_stack || pp_benign)
warn(3002, "Do not redefine macros without an #undef.");

if (pp_include & 1)
warn(3003, "#include macros are not allowed.");

if (lex_not_manifest)
warn(3004, "Define this constant in a macro.");

if (pp_arg_paren)
warn(3005, "Surround this argument with parentheses.");

if (pp_comment)
warn(3006, "Surround this comment with space.");

if (pp_white_before)
warn(3007, "The # must be in column 1 for portability.");

if (pp_trailer)
warn(3008, "Place these tokens in a comment.");

if (pp_if_depth > 8)
warn(3009, "#if nesting > 3 is not be portable.");

if (pp_include_depth > 8)
warn(3010, "Include depth exceeds 8.");

if (pp_pragma)
warn(3011, "Pragmas are generally not portable.");

CodeCheck – 126 – 10/17/04

if (pp_arg_multiple)
warn(3012, "Possible undesired side-effects may occur here.");

if (pp_assign)
warn(3013, "The \"=\" sign in this macro may be an error.");

if (pp_keyword)
warn(3014, "Warning: this macro redefines a keyword.");

if (pp_overload)
warn(3015, "This identifier conflicts with a macro function name.");

if (pp_semicolon)
warn(3016, "Macro body ends with a semicolon.");

if (pp_undef)
warn(3017, "Use #undef as seldom as possible.");

if (pp_unstack)
warn(3018, "Undefining multiply-defined macros is not portable.");

/********** Declaration Rules **********/

if (dcl_no_specifier)
{
if (dcl_function)

warn(4001, "Explicit function return type required.");
else

warn(4002, "Explicit type specifier required.");
}

if (dcl_bitfield_anon)
warn(4003, "All bitfields must have names.");

if (dcl_union_init)
warn(4004, "Do not initialize unions.");

if (dcl_auto_init)
warn(4005, "Do not initialize auto structs or arrays.");

if (dcl_union_bits)
warn(4006, "Do not use bitfields in unions.");

if (dcl_tag_def)
if (lin_source && (dcl_base == STRUCT_TYPE))

warn(4007, "Define structures in header files only.");

if (dcl_oldstyle)
warn(4008, "ALWAYS use prototypes.");

if (idn_no_prototype)
warn(4009, "Function %s needs a prototype.", idn_name());

if (dcl_need_3dots)
warn(4010, "ANSI C requires 3 dots (...) here.");

10/17/04 – 127 – CodeCheck

if (dcl_hidden)
warn(4011, "This declaration hides another.");

/********** General Rules **********/

if (macro("offsetof"))
warn(5001, "Do not use offsets!");

CodeCheck – 128 – 10/17/04

7.3 Porting to ANSI C

The differences between the de facto H&S standard of 1984-89 and the recently
published ANSI standard have been described in a number of recent publica-
tions, the best of which are RJ88, HS88, and KR88. The rules given here for porta-
tion from H&S to ANSI were developed from all of these sources. These rules are
not complete, but they cover most of the major problem areas.

Rule file ansi.cc

/* ansi.cc
Copyright (c) 1992-94 by Abraxas Software. All rights reserved.

==
Purpose: Checks for compatibility with ANSI C standards.
Author: Loren Cobb.
Revision: 12 October 1994.
Format: Monospaced font with 4 spaces/tab.

==

Abstract:

These CodeCheck rules check for compatibility with the ANSI C
Standard. These rules are not comprehensive, but they do check
for a great many of the troublesome areas of ANSI compliance.

These rules are applied to all headers that are included in double
quotes, e.g. #include "project.h". For proper use of these rules, be
sure to include system headers in angle brackets: #include <ctypes.h>.

DOS and OS/2 only: do not use the -K1 or -K0 options with these rules,
as this will prevent CodeCheck from parsing (and detecting) non-ANSI
keywords such as near, far, huge, pascal, etc.

Warning Codes:

8001 Rule file ansi.cc should not be run with option -K1 or -K2.
8002 Octal digits 8 and 9 are illegal in ANSI C.
8003 The long float type is illegal in ANSI C.
8004 ANSI C files must end with a newline character.
8005 String literal too long for ANSI C.
8006 ANSI C does not expand macros inside strings.
8007 ANSI C will recode the trigraph in this string.
8008 Too many parameters in this macro.
8009 This comment will not paste tokens in ANSI C.
8010 Header file nesting is too deep.
8011 This preprocessor usage is not allowed in ANSI C.
8012 ANSI C does not permit sizeof in directives.
8013 ANSI C does not parse tokens that follow a preprocessor directive.
8014 Not an ANSI preprocessor directive.
8015 This declaration is not valid.
8016 Only 31 chars are significant.

10/17/04 – 129 – CodeCheck

8017 Use double instead of long float.
8018 ANSI C requires 3 dots (...) here.
8019 Return type for this function should be specified.
8020 An explicit type is required in ANSI C declarations.
8021 Local static function declarations are not allowed in ANSI C.
8022 Zero-length arrays are illegal in ANSI C.
8023 This function has no prototype.
8024 Too many macros for some ANSI compilers.
8025 <specifier> is not an ANSI type specifier.
8026 For Apple "extended" type use ANSI "long double".
8027 Non-ANSI type modifier (pascal, cdecl, near, far, huge,

interrupt, export, loadds, saveregs, based, or fastcall).
8028 Non-ANSI placement of const or volatile.
8029 Non-ANSI function type specifier (inline, virtual, pure, pascal,

cdecl, interrupt, loadds, saveregs, fastcall, or export).
8030 Nested comments are not allowed in ANSI C.
8031 The preceding label is not attached to a statement.
8032 Array <name> must be declared extern.
8033 Binary constants are not permitted in ANSI C.
8034 <identifier>: Prefix <string> is reserved by ANSI.
8035 ANSI C does not use va_dcl.
8036 Macro va_start has two arguments in ANSI C.
8037 Replace header <header> with <header>.
8038 Replace function <name> with <name>.
8039 Replacement of preprocessor commands is not allowed in ANSI C.
8040 Empty initializers are not allowed in ANSI C.

==
*/

#include <check.cch>

#define REPLACE_HDR(hdr1,hdr2) if (strcmp(header_name(),hdr1) == 0) \
warn(8037, "Replace header " hdr1 " with " hdr2 ".");

#define REPLACE_FCN(fname,gname) if (strcmp(op_function(),fname) == 0) \
warn(8038, "Replace " fname " with " gname ".");

int ch, // Character that follows a prefix.
k, // counter for dcl_level(k)
non_ANSI_mod, // Non-ANSI type modifier flags
varargs_included; // True if <varargs.h> was included.

if (prj_begin)
{
/*

Flags for non-ANSI type and pointer modifiers:
*/
non_ANSI_mod = ~(CONST_FLAG + VOLATILE_FLAG);

/*
Make sure that extended keywords are allowed on DOS machines:

*/
#ifdef __MSDOS__

if (option('K') < 3)

CodeCheck – 130 – 10/17/04

{
warn(8001, "Rule file ansi.cc should not be run with -K1 or -K2.");
}

#endif
}

if (lex_big_octal)
warn(8002, "Octal digits 8 and 9 are illegal in ANSI C.");

if (lex_long_float)
warn(8003, "The long float type is illegal in ANSI C.");

if (lex_nl_eof)
warn(8004, "ANSI C files must end with a newline character.");

if (lex_str_length > 509)
warn(8005, "String literal too long for ANSI C.");

if (lex_str_macro)
warn(8006, "ANSI C does not expand macros inside strings.");

if (lex_str_trigraph)
warn(8007, "ANSI C will recode the trigraph in this string.");

if (pp_arg_count > 31)
warn(8008, "Too many parameters in this macro.");

if (pp_comment)
warn(8009, "This comment will not paste tokens in ANSI C.");

if (pp_if_depth > 8)
warn(8010, "Header file nesting is too deep.");

if (pp_not_ansi)
warn(8011, "This preprocessor usage is not allowed in ANSI C.");

if (pp_sizeof)
warn(8012, "ANSI C does not permit sizeof in directives.");

if (pp_trailer)
warn(8013, "ANSI C does not parse tokens that follow a preprocessor

directive.");

if (pp_unknown)
warn(8014, "Not an ANSI preprocessor directive.");

if (dcl_empty)
if (! dcl_tag_def)

warn(8015, "This declaration is not valid.");

if (dcl_ident_length > 31)
warn(8016, "Only 31 chars are significant.");

if (dcl_long_float)
warn(8017, "Use double instead of long float.");

10/17/04 – 131 – CodeCheck

if (dcl_need_3dots)
warn(8018, "ANSI C requires 3 dots (...) here.");

if (dcl_no_specifier)
{
if (dcl_function)

warn(8019, "Return type for function %s should be specified.",
dcl_name());

else
warn(8020, "An explicit type for %s is required in ANSI C.", dcl_name()

);
}

if (dcl_static)
if (dcl_local && dcl_function)

warn(8021, "Local static function declarations are not allowed in ANSI
C.");

if (dcl_zero_array)
warn(8022, "Zero-length arrays are illegal in ANSI C.");

if (idn_no_prototype)
warn(8023, "Function %s has no prototype.", idn_name());

if (mod_macros > 1024)
warn(8024, "Too many macros for some ANSI compilers.");

if (dcl_base == EXTRA_INT_TYPE)
if (lin_header != SYS_HEADER)

warn(8025, "non-ANSI integer type.");

if (dcl_base == EXTRA_UINT_TYPE)
if (lin_header != SYS_HEADER)

warn(8025, "non-ANSI unsigned type.");

if (dcl_base == EXTRA_FLOAT_TYPE)
if (lin_header != SYS_HEADER)

warn(8025, "non-ANSI float type.");

if (dcl_base == EXTRA_PTR_TYPE)
if (lin_header != SYS_HEADER)

warn(8025, "non-ANSI pointer type.");

if (dcl_storage_flags & GLOBAL_SC)
if (lin_header != SYS_HEADER)

warn(8025, "VAX globaldef and globalref are not ANSI type specifiers."
);

if (keyword("comp"))
if (lin_header != SYS_HEADER)

warn(8025, "Apple comp is not an ANSI type specifier.");

if (keyword("extended"))
if (lin_header != SYS_HEADER)

warn(8026, "For Apple \"extended\" type use ANSI \"long double\".");

CodeCheck – 132 – 10/17/04

if (dcl_variable || dcl_function)
if (lin_header != SYS_HEADER)

{
k = 0;
while (k <= dcl_levels)

if (dcl_level_flags(k++) & non_ANSI_mod)
warn(8027, "Non-ANSI type modifier.");

}

if (dcl_cv_modifier)
if (lin_header != SYS_HEADER)

warn(8028, "Non-ANSI placement of const or volatile.");

if (dcl_function_flags)
warn(8029, "Non-ANSI function type specifier.");

if (lex_nested_comment)
{
warn(8030, "Nested comments are not allowed in ANSI C.");

// If you want CodeCheck to assume that nested comments are okay as
// soon as it finds the first such comment, then enable these 2 lines:

/*
if (option('N') == 0) // Assume that the rest of this file

set_option('N', 1); // will contain nested comments too.
*/

}

// Although many modern compilers allow labels that are not attached
// to any statement, e.g. at the end of a block, this is not allowed
// by the ANSI standard.

if (stm_bad_label)
warn(8031, "The preceding label is not attached to a statement.");

// Detects local arrays that have no explicit dimension. Some
// pre-ANSI compilers consider such arrays to be implicitly
// external (i.e. the identifier has file scope and external
// linkage). This interpretation is not allowed in ANSI C.

if (dcl_level(0) == ARRAY)
if (dcl_local && (dcl_array_size == -1) && (! dcl_parameter))

if ((! dcl_extern) && (! dcl_initializer))
warn(8032, "Array %s must be declared extern.", dcl_name());

// Detect Zortech binary constants (e.g. 0b10101001):

if (lex_radix == 2)
if (lin_header != SYS_HEADER)

warn(8033, "Binary constants are not permitted in ANSI C.");

10/17/04 – 133 – CodeCheck

// Check each external identifier for reserved prefixes:

if ((dcl_global && ! dcl_static) || pp_macro)
if (lin_header != SYS_HEADER)

{
if (prefix("E"))

{
ch = root()[0];
if (isdigit(ch) || isupper(ch))

warn(8034, "%s: prefix E is reserved by ANSI.", dcl_name());
}

if (prefix("is"))
{
ch = root()[0];
if (islower(ch))

warn(8034, "%s: prefix \"is\" is reserved by ANSI.", dcl_name()
);

}
else if (prefix("to"))

{
ch = root()[0];
if (islower(ch))

warn(8034, "%s: prefix to is reserved by ANSI.", dcl_name());
}

else if (prefix("LC_"))
{
ch = root()[0];
if (isupper(ch))

warn(8034, "%s: prefix LC_ is reserved by ANSI.", dcl_name());
}

else if (prefix("SIG"))
{
ch = root()[0];
if (isupper(ch) || (ch == '_'))

warn(8034, "%s: prefix SIG is reserved by ANSI.", dcl_name());
}

else if (prefix("mem"))
{
ch = root()[0];
if (islower(ch))

warn(8034, "%s: prefix mem is reserved by ANSI.", dcl_name());
}

else if (prefix("str"))
{
ch = root()[0];
if (islower(ch))

warn(8034, "%s: prefix str is reserved by ANSI.", dcl_name());
}

else if (prefix("wcs"))
{
ch = root()[0];
if (islower(ch))

warn(8034, "%s: prefix wcs is reserved by ANSI.", dcl_name());
}

}

CodeCheck – 134 – 10/17/04

if (macro("va_dcl"))
warn(8035, "ANSI C does not use va_dcl.");

if (macro("va_start"))
if (varargs_included)

warn(8036, "Macro va_start has two arguments in ANSI C.");

if (header_name())
{
if (strcmp(header_name(),"varargs.h") == 0)

{
warn(8037, "Replace <varargs.h> with <stdargs.h>.");
varargs_included = 1;
}

else REPLACE_HDR("memory.h", "string.h")
else REPLACE_HDR("sys/times.h", "time.h")
}

if (op_call)
{

 REPLACE_FCN("cfree", "free")
else REPLACE_FCN("bcmp", "strcmp")
else REPLACE_FCN("bzero", "memset")
else REPLACE_FCN("strpos", "strchr")
else REPLACE_FCN("strrpos", "strrchr")
else REPLACE_FCN("mktemp", "tmpnam")
}

if (pp_sub_keyword)
warn(8039, "Replacement of preprocessor commands is not allowed in ANSI C."

);

if (exp_empty_initializer)
warn(8040, "Empty initializers are not allowed in ANSI C.");

10/17/04 – 135 – CodeCheck

7.4 Porting to Strict K&R Compilers

The differences between the de facto H&S standard of 1984-89 and the original
Kernighan & Ritchie standard of 1978 were described by Harbison & Steele in
HS84. The rule set given here for porting from ANSI C to K&R C was developed
primarily from this source. These rules are not complete, but they cover most of
the major problem areas.

Rule file toKR.cc

/* Copyright (c) 1989-92 by Abraxas Software.
 *
 * This is a collection of CodeCheck rules for
 * testing for portability to strict K&R C compilers.
 */

#include <check.cch>

if (identifier("entry"))
warn(7001, "\"entry\" is a reserved keyword in K&R.");

if (lex_not_KR_escape)
warn(7002, "This escape sequence is not defined in K&R.");

if (lex_backslash)
warn(7003, "This line continuation is not allowed in K&R.");

if (lex_float || lex_unsigned || lex_long_float)
warn(7004, "This suffix is not allowed in K&R.");

if ((lex_radix == 16) || lex_hex_escape)
warn(7005, "Hexadecimal numbers are not defined in K&R.");

if (lex_str_macro)
warn(7006, "K&R compilers do not recognize macros in strings.");

if (lex_str_concat)
warn(7007, "Implicit string concatenation not defined in K&R.");

if (lex_trigraph)
warn(7008, "Trigraphs are not defined in K&R.");

if (lex_wide)
warn(7009, "Wide chars and strings are not defined in K&R.");

if (pp_error)
warn(7010, "The #error directive is not defined in K&R.");

if (pp_paste)

CodeCheck – 136 – 10/17/04

warn(7011, "The # (paste) operator is not defined in K&R.");

if (pp_pragma)
warn(7012, "The #pragma directive is not defined in K&R.");

if (pp_stringize)
warn(7013, "The ## preprocessor operator not defined in K&R.");

if (pp_unknown)
warn(7014, "This preprocessor directive is not defined in K&R.");

if (pp_defined)
warn(7015, "The \"defined\" function is not defined in K&R.");

if (pp_elif)
warn(7016, "The #elif directive is not defined in K&R.");

if (keyword("const"))
warn(7017, "The \"const\" type is not defined in K&R.");

if (keyword("volatile"))
warn(7018, "The \"volatile\" type is not defined in K&R.");

if (keyword("signed"))
warn(7019, "The \"signed\" type is not defined in K&R.");

if (dcl_function)
if (! dcl_oldstyle)

warn(7020, "Prototypes are not allowed in K&R.");

if (dcl_3dots)
warn(7021, "The 3-dot notation is not allowed in K&R.");

if (dcl_need_3dots)
warn(7022, "Comma after argument list is not allowed in K&R.");

if (keyword("enum"))
warn(7023, "The enumerated type is not permitted in K&R.");

if (keyword("void"))
warn(7024, "The void type is not permitted in K&R.");

if (dcl_union_init)
warn(7025, "Unions cannot be initialized in K&R.");

if (lin_nested_comment)
warn(7026, "Nested comments are not permitted in K&R.");

if (lex_cpp_comment)
warn(7027, "The // comment is not permitted in K&R.");

if (dcl_extern_ambig)
warn(7028, "%s matches another name on 6 chars.", dcl_name());

10/17/04 – 137 – CodeCheck

7.5 Measuring Code Complexity

The McCabe Cyclomatic Complexity measure, described in Section 6.2.2, is
one of the most commonly used measures of code complexity. Here is a sample
CodeCheck rule file that calculates the McCabe and other measures of complex-
ity for every function in a project.

Rule file complex.cc

/*
 * Copyright (c) 1989-90 by Abraxas Software.
 *
 * This is the start of a collection of CodeCheck rules
 * for measuring function complexity and operator density.
 *
 * NOTE: A CodeCheck bug (corrected in version 2.07) caused
 * the McCabe measure calculated by these rules to be under-
 * estimated: certain decision points were not counted.
 *
 */

statistic int McCabe;
statistic float density;

if (prj_begin)
{
printf("\n================== %s ================\n", prj_name());
printf("\nDate: %s.\n\n", time_stamp());
printf("Complexity => McCabe's Cyclomatic Complexity.\n");
printf("Density => Operators per executable line.\n");
printf("Asterisks => Function is too complex.\n");
}

if (mod_begin)
{
printf("\n\n--------------- %s ---------------\n\n", mod_name());
printf("FUNCTION Complexity Density\n");
reset(fcn_decisions);
reset(fcn_operators);
reset(fcn_exec_lines);
reset(McCabe);
reset(density);
}

if (fcn_end)
{
McCabe = 1 + fcn_decisions;
printf("%-16s %3d ", fcn_name(), McCabe);
if (McCabe >= 30)

printf("*** ");

CodeCheck – 138 – 10/17/04

else if (McCabe >= 20)
printf("** ");

else if (McCabe >= 10)
printf("* ");

else
printf(" ");

if (fcn_exec_lines > 0)
density = (1.0*fcn_operators) / fcn_exec_lines;

else
density = 0.0;

printf("%9.1f\n", density);
}

if (mod_end)
if (ncases(fcn_exec_lines) > 0)

{
printf("\nFunction Density (operators per executable line):\n");
printf(" Mean: %6.2f\n", mean(density));
printf(" Std.Dev: %6.2f\n", stdev(density));

printf("\nFunction Complexity (McCabe):\n");
printf(" Mean: %6.2f\n", mean(McCabe));
printf(" Std.Dev: %6.2f\n", stdev(McCabe));
printf(" Maximum: %6.2f\n", maximum(McCabe));
printf(" Histogram:\n");
histogram(McCabe, 0, 20, 21);
printf("\n");
}

if (prj_end)
printf("\n\n================== END ==================\n\n");

10/17/04 – 139 – CodeCheck

7.6 Verifying the Order of Module Elements

Many software companies have as part of their coding standards a specific
ordering for the elements of every source file, e.g. first external declarations, then
macros, type definitions, static declarations, and finally, function definitions. It is
not difficult to build a rule file that checks for violations of these orderings. The
following rules illustrate one method in use at a major software house:

Rule file order.cc

// These CodeCheck rules illustrate one way of enforcing
// a standard order upon the elements of a C source file.

// Copyright (c) 1991 by Abraxas Software. All rights reserved.
// Author: Loren Cobb, Abraxas Software, February 1991.

// This file detects violations of the following order:

// 1. Header file #include directives.
// 2. External variable declarations.
// 3. Function declarations.
// 4. Macro definitions.
// 5. Type definitions.
// 6. Public variable definitions (external linkage).
// 7. Private variable definitions (static identifiers).
// 8. Function definitions.

///////////////////////////////
// Module Initialization: //
///////////////////////////////

int stage; // Module format stage (range: 0-8)

if (mod_begin)
stage = 0; // Reinitialize stage at start of every module.

/////////////////////////////
// Module Format Rules: //
/////////////////////////////

if (pp_include)
{
if ((stage > 1) && (stage != 4))

warn(1001, "This #include of file %s is out of sequence.", header_name());
stage = 1;
}

CodeCheck – 140 – 10/17/04

if (dcl_global)
if (lin_source)

{
if (dcl_function)

{
if (dcl_definition)

stage = 8;
else

{
if (stage > 3)

warn(1003, "Function %s is out of sequence.", dcl_name());
stage = 3;
}

}
else if (dcl_extern)

{
if (stage > 2)

warn(1002,"Declaration of %s is out of sequence.",dcl_name());
stage = 2;
}

else if (dcl_static)
{
if (stage > 7)

warn(1007, "Variable %s is out of sequence.", dcl_name());
stage = 7;
}

else
{
if (stage > 6)

warn(1006, "Variable %s is out of sequence.", dcl_name());
stage = 6;
}

}

if (pp_macro)
if (lin_source)

{
if (stage > 4)

warn(1004, "This macro definition is out of sequence.");
stage = 4;
}

if (dcl_typedef)
if (lin_source)

{
if (stage > 5)

warn(1005, "Typename %s is out of sequence.", dcl_name());
stage = 5;
}

10/17/04 – 141 – CodeCheck

7.7 C++ Rules

There have been several attempts to codify good C++ programming practices
in the form of standards for C++ source code, but the definitive work in this area
is yet to be written. In the interim, here are a few rules for C++ code that can
serve as a basis for further development:

Rule file cplus.cc

// Copyright (c) 1992-93 by Abraxas Software.

// This is a collection of CodeCheck rules
// for elementary checking of C++ source code.

#include <check.cch>

if (mod_begin)
if ((option('K') < 4) || (option('K') > 7))

{
warn(1000, "Use C++ for this file! (option -K4).");
}

//
// 1. Declare a virtual destructor in every base class that
// has a virtual function. (Stroustrup & Ellis, p. 278)

int has_virtual_function,
has_virtual_destructor;

if (tag_begin)
{
if (tag_kind > 1 && ! tag_nested && ! tag_local)

{
has_virtual_function = 0;
has_virtual_destructor = 0;
}

}

if (dcl_virtual)
{
if (dcl_base == DESTRUCTOR_TYPE)

has_virtual_destructor = 1;
else if (dcl_base != CONSTRUCTOR_TYPE)

has_virtual_function = 1;
}

if (tag_end)
{
if (tag_kind > 1 && ! tag_nested && ! tag_local)

{

CodeCheck – 142 – 10/17/04

if (has_virtual_function && ! has_virtual_destructor)
warn(2007, "This class needs a virtual destructor.");

has_virtual_function = 0;
has_virtual_destructor = 0;
}

}

//
// 2. Use const variables or enumerated constants
// instead of preprocessor (#define) constants.

if (pp_const)
warn(1001, "Do not use the preprocessor to define constants.");

//
// 3. A nested tag name should have an explicit scope.

if (lex_invisible)
warn(1002, "Nested tag name %s should be scoped.", token());

//
// 4. In C++ the const specifier implies internal linkage,
// so either specify extern or initialize the constant.

if (dcl_simple)
if (dcl_level_flags(0) & CONST_FLAG)

if (! dcl_parameter && ! dcl_initializer && ! dcl_extern)
warn(2001, "Initializer or extern specifier needed.");

if (dcl_level(0) == POINTER)
if (dcl_level_flags(0) & CONST_FLAG)

if (! dcl_parameter && ! dcl_initializer && ! dcl_extern)
warn(2001, "Initializer or extern specifier needed.");

//
// 5. C++ variables should ALWAYS have an explicit type.

if (dcl_no_specifier)
{
if (dcl_function)

warn(2002, "%s: Explicit return type recommended.", dcl_name());
else

warn(2002, "%s: Explicit type specifier needed.", dcl_name());
}

//
// 6. Default function parameters are much safer than
// variable argument lists, so use them!

if (dcl_3dots)
warn(2003, "Use default parameters, not variable argument lists.");

//
// 7. Avoid gratuitous overloading of names in C++.

if (dcl_hidden)

10/17/04 – 143 – CodeCheck

warn(2004, "Identifier %s is already in use.", dcl_name());

CodeCheck – 144 – 10/17/04

7.8 Advanced C++ Rules

This rule represents sample in-house quality control standard for C++ that can
be used by a typical software team.

Rule File: xyz.cc

/* xyzrule.cc// Copyright (c) 1992-96 by Abraxas Software.

==
Purpose: Checks for compatibility with XYZ C++ standards.

==

Abstract:

These CodeCheck rules check for compatibility with the XYZ C++
Coding Rules.

These rules are applied to all headers that are included in double
quotes, e.g. #include "project.h". For proper use of these rules, be
sure to include system headers in angle brackets: #include <ctypes.h>.

Warning Codes:

9111 Header filename <name> is not in DOS format.
9121 Class names must begin with XYZxxx_
9131 Private member name <name> must not begin in uppercase.
9131 Private member name <name> must end with an underscore.
9211 Definition of class <name> belongs in a header file.
9212 File <name> needs a leading comment block.
9213 Header file <name> should be wrapped in an #ifndef.
9213 <name> is not the correct wrapper name for this file.
9214 Definition of function <name> must NOT be in a header file.
9221 Public section must come first in class <name>.
9222 Data member <name> of class <name> must be private.
9231 Function <name> is too long to be inlined.
9232 Do NOT use inline within a class definition.
9251 Class <name> needs a default constructor.
9251 Class <name> needs a copy constructor.
9252 Class <name> needs an operator=().
9253 Class <name> has too many constructors (limit is 3).
9254 Class <name> needs a destructor.
9255 Destructor for class <name> must be virtual.
9261 Operator <name> should not be a friend.
9261 Do NOT declare friend functions.
9261 Do NOT declare friend classes.
9271 Do NOT use virtual base classes.
9281 Declare <name> using a typedef name, not a basic C type.

10/17/04 – 145 – CodeCheck

9282 Define typedef name <name> in a base class.
9293 Define enum <name> in a base class.
9311 Declare parameter <name> to be a reference to <type>.
9312 Operator <name> should not return an object.
9314 Function <name> should not return an object.
9315 Reference parameters must come first.
9316 Constant member functions should be avoided.
9317 Parameter <name> should not be const.
9411 Use // comments, not oldstyle C comments.
9421 Declare <name> as a const, not a macro.
9422 This enumeration needs an enum type name.
9431 Global constant <name> should be a class member.
9441 Function <name> needs an explicit return type.

==
*/

#include <check.cch>

#define DOT ('.') // period character
#define SLASH ('/') // forward slash character
#define BACKSLASH ('\\') // backslash character
#define COLON (':') // colon character
#define TILDE ('~') // tilde character
#define UNDERSCORE ('_') // underscore character

#define PUBLIC 0
#define PROTECTED 1
#define PRIVATE 2

int ch, j, k, okay, level,
is_constant, is_object,
lin_if_depth, // Holds latest value of pp_if_depth.
comment_needed, // True until a header file's comment-block is

found.
define_needed, // True until a header file's wrapper macro is

#defined.
public_needed, // True when a class definition begins.
one_liner_needed, // True when a function is explicitly inlined.
no_wrap_message, // True if a wrapper-needed message has NOT been given.
class_has_virtual_function,
destructor_is_virtual,
non_ref_parm_found, // True if a non-reference fcn parameter has been

found.
detect_virtual_base,
bad_name, // True if the wrapper name is wrong.
length, ch1, ch2;

// ---------- Rule 1.1.1 ----------

if (header_name()) // A header is about to be opened
{
if (pp_include < 3) // Header filename is in double quotes

CodeCheck – 146 – 10/17/04

{
j = 0;
k = 0;
ch = header_name()[k++];
while (ch != 0)

{
ch = header_name()[k++];
if (ch == DOT)

{
break; // beginning of extension found
}

else
{
j = k; // count characters before dot
}

if (ch == BACKSLASH || ch == COLON)
{
j = 0; // DOS directory or disk marker
}

else if (ch == SLASH || ch == TILDE)
{
j = 0; // Unix directory or disk marker
}

}
if (j > 8)

{
warn(9111, "Header filename %s is not in DOS 8.3 format.",

header_name());
}

else if (ch == DOT)
{
j = 0;
ch = header_name()[k+j];
while (ch != 0)

{
j++;
ch = header_name()[k+j]; // count chars after dot.
}

if (j > 3)
{
warn(9111, "Header filename %s is not in DOS 8.3 format.",

header_name());
}

}
}

}

// ---------- Rule 1.2.1 ----------

if (tag_begin)
{
// Apply this rule to global classes only:

if (tag_global && (tag_kind == CLASS_TAG))

10/17/04 – 147 – CodeCheck

{
if (! prefix("XYZ"))

warn(9121, "Class names must begin with \"XYZ_\"");
else if (strstr(tag_name(), "_") == 0)

warn(9121, "Use an underscore after the class name prefix.");
}

}

// ---------- Rule 1.3.1 ----------

if (dcl_member == 3)
{
if (dcl_access == PRIVATE)

{
if (dcl_variable)

{
if (isupper(dcl_name()[0]))

warn(9131, "Private data member name %s must not begin in
uppercase.",

dcl_name());
if (! suffix("_"))

warn(9131, "Private data member name %s must end with an
underscore.",

dcl_name());
}

else if (dcl_function)
{
if (isupper(dcl_name()[0]))

warn(9131, "Private function name %s must not begin in
uppercase.",

dcl_name());
if (! suffix("_"))

warn(9131, "Private function name %s must end with an
underscore.",

dcl_name());
}

}
}

// ---------- Rule 2.1.1 ----------

if (tag_begin)
{
if (tag_global && (tag_kind == CLASS_TAG))

{
if (lin_source)

warn(9211, "Definition of class %s belongs in a header file.",
tag_name());

}
}

CodeCheck – 148 – 10/17/04

// ---------- Rules 2.1.2 ----------

if (mod_begin)
{
comment_needed = FALSE;
}

if (lin_end)
{
if (lin_number == 1)

{
if (lin_is_comment)

{
comment_needed = FALSE;
}

else if (lin_header)
{
comment_needed = TRUE;
}

}

if (comment_needed)
{
if (lin_is_comment)

{
comment_needed = FALSE;
}

else if (lin_preprocessor)
{
warn(9212, "File %s needs a leading comment block.",

file_name());
comment_needed = FALSE;
}

else if (lin_has_code)
{
warn(9212, "File %s needs a leading comment block.",

file_name());
comment_needed = FALSE;
}

}
}

// ---------- Rule 2.1.3 ----------

if (pp_if_depth || pp_endif)
{
lin_if_depth = pp_if_depth;
}

if (pp_include)
{
if (lin_header)

{

10/17/04 – 149 – CodeCheck

if (no_wrap_message)
{
warn(9213, "Header file %s should be wrapped in an #ifndef.",

file_name());
}

}

no_wrap_message = TRUE;
define_needed = TRUE;
}

if (lin_dcl_count)
{
if (lin_header && lin_if_depth == 0)

{
if (no_wrap_message)

{
warn(9213, "Header file %s should be wrapped in an #ifndef.",

file_name());
no_wrap_message = FALSE;
define_needed = FALSE;
}

}
}

if (pp_macro)
{
if (lin_header)

{
if (no_wrap_message && lin_if_depth == 0)

{
warn(9213, "Header file %s should be wrapped in an #ifndef.",

file_name());
no_wrap_message = FALSE;
define_needed = FALSE;
}

if (define_needed && lin_if_depth == 1)
{
bad_name = FALSE;
length = strlen(pp_name());
k = 0;
while (k < length)

{
ch1 = pp_name()[k];
ch2 = file_name()[k];
k++;
if (isalpha(ch2))

{
ch2 = toupper(ch2);
}

else if (ch2 == DOT)
{
ch2 = UNDERSCORE;
}

if (ch1 != ch2)
{

CodeCheck – 150 – 10/17/04

warn(9213, "%s is not the correct wrapper name for this
file.",

pp_name());
break;
}

}
}

define_needed = FALSE;
}

}

// ---------- Rule 2.1.4 ----------

if (dcl_function)
{
if (dcl_member && dcl_definition)

{
if (! lin_source)

{
warn(9214, "Definition of function %s must NOT be in a header file.",

dcl_name());
}

one_liner_needed = dcl_inline; // for Rule 2.3.2
}

}

// ---------- Rule 2.2.1 ----------

if (tag_begin)
{
if (tag_global && (tag_kind == CLASS_TAG))

{
public_needed = TRUE;
}

}

if (dcl_member)
{
if (dcl_access) // true if protected or private member

{
if (public_needed)

{
warn(9221, "Public section must come first in class %s.",

class_name());
}

}
public_needed = FALSE;
}

10/17/04 – 151 – CodeCheck

// ---------- Rule 2.2.2 ----------

if (dcl_member)
{
if (dcl_variable && (dcl_access != PRIVATE))

{
warn(9222, "Data member %s of class %s must be private.",

dcl_name(), class_name());
}

}

// ---------- Rule 2.3.1 ----------

if (fcn_exec_lines > 1)
{
if (one_liner_needed)

{
warn(9231, "Function %s is too long to be inlined.",

fcn_name());
}

}

// ---------- Rule 2.3.2 ----------

if (dcl_inline)
{
if (lin_within_class == 1)

{
warn(9232, "Do NOT use inline within a class definition. (%d)",

lin_within_class);
}

}

// ---------- Rule 2.4.1 ----------

// *** This needs a new trigger in CodeCheck: dcl_override. ***

// ---------- Rules 2.5.1, 2.5.2, and 2.5.4 ----------

if (tag_end)
{
if (tag_global && (tag_kind == CLASS_TAG))

{
if (! tag_has_default)

{
warn(9251, "Class %s needs a default constructor.", class_name());
}

CodeCheck – 152 – 10/17/04

if (! tag_has_copy)
{
warn(9251, "Class %s needs a copy constructor.", class_name());
}

if (! tag_has_assign)
{
warn(9252, "Class %s needs an operator=(%s&).", class_name(),

class_name());
}

}
}

// ---------- Rule 2.5.3 ----------

if (tag_constructors > 3)
{
warn(9253, "Class %s has too many constructors (limit = 3).",

class_name());
}

// ---------- Rules 2.5.4 and 2.5.5 ----------

if (tag_begin)
{
if (tag_global && (tag_kind == CLASS_TAG))

{
class_has_virtual_function = FALSE;
destructor_is_virtual = FALSE;
}

}

if (dcl_function)
{
if (dcl_virtual)

{
if (dcl_base == DESTRUCTOR_TYPE)

{
destructor_is_virtual = TRUE;
}

else
{
class_has_virtual_function = TRUE;
}

}
}

if (tag_end)
{
if (tag_global && (tag_kind == CLASS_TAG))

{
if (tag_has_destr)

{

10/17/04 – 153 – CodeCheck

if (class_has_virtual_function)
{
if (! destructor_is_virtual)

{
warn(9255, "Destructor %s::~%s() must be virtual.",

class_name(), class_name());
}

}
}

else
{
warn(9254, "Class %s needs a destructor.", class_name());
}

}
}

// ---------- Rules 2.6.1 and 2.6.2 ----------

if (dcl_friend)
{
if (dcl_function)

{
if (prefix("operator"))

{
if (strequiv(root(), "="))

;
else if (strequiv(root(), "+"))

;
else if (strequiv(root(), "-"))

;
else if (strequiv(root(), "*"))

;
else if (strequiv(root(), "/"))

;
else if (strequiv(root(), "%"))

;
else if (strequiv(root(), ">>"))

;
else if (strequiv(root(), "<<"))

;
else

warn(9261, "%s should not be a friend.", dcl_name());
}

else
warn(9261, "Do NOT declare friend functions.");

}
else

{
warn(9262, "Do NOT declare friend classes.");
}

}

CodeCheck – 154 – 10/17/04

// ---------- Rule 2.7.1 ----------

if (keyword("class"))
{
detect_virtual_base = TRUE;
}

if (keyword("virtual"))
{
if (detect_virtual_base)

{
warn(9271, "Do NOT use virtual base classes.");
}

}

if (dcl_base == CLASS_TYPE)
{
detect_virtual_base = FALSE;
}

// ---------- Rule 2.8.1 ----------

if (dcl_member)
{
if (dcl_variable && dcl_base != DEFINED_TYPE)

{
warn(9281, "Declare %s using a typedef name, not a basic C type.",

dcl_name());
}

}

// ---------- Rule 2.8.2 ----------

if (dcl_typedef)
{
if (dcl_member == 0)

{
warn(9282, "Define typedef name %s in a base class.",

dcl_name());
}

}

// ---------- Rule 2.9.1 ----------

// This rule is not currently enforceable with CodeCheck.

// ---------- Rule 2.9.2 ----------

10/17/04 – 155 – CodeCheck

// This rule is redundant (covered by 3.1.2).

// ---------- Rule 2.9.3 ----------

if (tag_kind == ENUM_TAG)
{
if (tag_global)

{
warn(9293, "Define enum %s in a base class.", tag_name());
}

}

// ---------- Rule 3.1.1 ----------

if (dcl_parameter)
{
is_object = ((dcl_base == CLASS_TYPE) || (dcl_base == STRUCT_TYPE));
if (is_object)

{
if ((dcl_levels == 0) || ((dcl_levels == 1) && (dcl_level(0) ==

POINTER)))
{
if (dcl_abstract)

{
warn(9311, "Declare parameter #%d to be a reference to %s.",

dcl_parameter, dcl_base_name());
}

else
{
warn(9311, "Declare parameter %s to be a reference to %s",

dcl_name(), dcl_base_name());
}

}
}

}

// ---------- Rules 3.1.2 and 3.1.4 ----------

if (dcl_function)
{
is_object = ((dcl_base == CLASS_TYPE) || (dcl_base == STRUCT_TYPE));
if (dcl_member && is_object)

{
if ((dcl_levels == 1) || ((dcl_levels == 2) && (dcl_level(1) ==

REFERENCE)))
{
if (prefix("operator"))

{
if (strequiv(root(), "="))

;

CodeCheck – 156 – 10/17/04

else if (strequiv(root(), "+"))
;

else if (strequiv(root(), "-"))
;

else if (strequiv(root(), "*"))
;

else if (strequiv(root(), "/"))
;

else if (strequiv(root(), "%"))
;

else if (strequiv(root(), ">>"))
;

else if (strequiv(root(), "<<"))
;

else
{
warn(9312, "%s::%s() should not return an object.",

class_name(), dcl_name());
}

}
else

{
warn(9314, "Function %s::%s() should not return an object.",

class_name(), dcl_name());
}

}
}

}

// ---------- Rule 3.1.3 ----------

// This rule cannot be enforced with this version of CodeCheck

// ---------- Rule 3.1.5 ----------

if (dcl_parameter)
{
if (dcl_parameter == 1)

{
non_ref_parm_found = FALSE;
}

if (dcl_level(0) == REFERENCE)
{
if (non_ref_parm_found)

{
warn(9315, "Reference parameters must come first.");
}

}
else // a non-reference fcn parameter has been found

{
non_ref_parm_found = TRUE;

10/17/04 – 157 – CodeCheck

}
}

// ---------- Rule 3.1.6 ----------

if (dcl_function)
{
is_constant = (dcl_level_flags(0) & CONST_FLAG);
if (dcl_member && is_constant)

{
warn(9316, "Constant member functions should be avoided.");
}

}

// ---------- Rule 3.1.7 ----------

if (dcl_parameter)
{
is_object = ((dcl_base == CLASS_TYPE) || (dcl_base == STRUCT_TYPE));
if (is_object && (dcl_levels == 1))

{
is_constant = (dcl_level_flags(1) & CONST_FLAG);
level = dcl_level(0);
if (is_constant && ((level == POINTER) || (level == REFERENCE)))

{
if (dcl_abstract)

{
warn(9317, "Parameter #%d should not be const.",

dcl_parameter);
}

else
{
warn(9317, "Parameter %s should not be const.", dcl_name());
}

}
}

}

// ---------- Rule 4.1.1 ----------

if (lex_c_comment)
{
warn(9411, "Use /\/ comments, not \/*...*\/ comments.");
}

// ---------- Rule 4.2.1 ----------

if (pp_const)

CodeCheck – 158 – 10/17/04

{
if (lin_header && ! define_needed)

{
warn(9421, "Declare %s as a const, not a macro.", pp_name());
}

}

// ---------- Rule 4.2.2 ----------

if (tag_anonymous)
{
if (tag_global && tag_kind == ENUM_TAG)

{
warn(9422, "This enumeration needs an enum type name.");
}

}

// ---------- Rule 4.3.1 ----------

if (dcl_variable)
{
is_constant = (dcl_level_flags(dcl_levels) & CONST_FLAG);
if (dcl_global && is_constant)

{
warn(9431, "Global constant %s should be a class member.",

dcl_name());
}

}

// ---------- Rule 4.4.1 ----------

if (dcl_no_specifier)
{
if (dcl_function)

{
warn(9441, "Function %s needs an explicit return type.",

dcl_name());
}

}

10/17/04 – 159 – CodeCheck

Chapter 8: Supporting Material

8.1 Glossary

abstract declarator A declarator without an identifier. Abstract declarators are
only used in two situations in C: in casts, and as the argu-
ment for sizeof.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange. A 7-
bit coding scheme for the binary representation of alpha-
betic, numeric, and page-formatting information. ASCII is
used by almost all computers except IBM mainframes and
their compatibles, which use EBCDIC (although IBM mi-
crocomputers and their compatibles do not).

big endian A computer is “big endian” (as opposed to “little endian”)
if the low-order (“end”) byte in a word has a larger address
than the high-order byte. The Motorola 68000 family is big
endian, while the VAX and Intel 80x86 families are not.
Synonym: left-to-right.

bitwise Certain operators in C act in a “bitwise” fashion, meaning
that the operator is separately applied to each bit of the
operands.

BNF Either “Backus-Naur Form” or “Backus Normal Form”, de-
pending on how much credit you want to give to Dr. P.
Naur. This is a language designed for use in describing
language grammars.

cast A “cast” is an explicit type conversion. In C, a cast consists
of an abstract declarator surrounded by parentheses.

conjunction The logical (i.e. not bitwise) “and” operation.

declarator A type specification. A declarator may or may not include
an identifier. For example, the cast (char *) is an ab-

CodeCheck – 160 – 10/17/04

stract declarator without an identifier, while the expression
char *x is a declarator with an identifier (i.e. x).

dereference A pointer is “dereferenced” when the value is obtained
from the address to which the pointer points. The origin of
this awkward neologism is obscure, but it seems to have
been invented by analogy with the word “reference”: if a
variable can be referenced by a pointer, then the pointer
must be dereferenced to obtain the value to which it points.
It’s not English, but it computes.

disjunction The logical (i.e. not bitwise) “or” operation.

EBCDIC Extended binary coded decimal interchange code. An 8-bit
coding scheme for the binary representation of alphabetic,
numeric, and page-formatting information. EBCDIC was
invented by IBM for use by its mainframe computers. Pro-
nounced “ebsidick”.

enumeration tag The name given to an enumeration. Once an enumeration
has been tagged, it can be identified by tag when declaring
other variables that refer to the same enumeration.

escape sequence The C language permits the use of certain codes that stand
for special characters (e.g. \b is the C escape sequence for
the backspace control character).

exception An unexpected condition that the program encounters and
cannot cope with. See C++ keywords try, catch, and throw.

extent The “extent” of a variable is the time during which it refers
to storage. Variables with static extent have storage allo-
cated throughout execution of the program, while vari-
ables of local extent are allocated storage only while exe-
cution proceeds through the block in which they are de-
clared. See “scope” and “visibility”.

hexadecimal Base 16 numbers. The digits are: {0, 1, … 8, 9, a, b, c, d, e, f}.
Hexadecimal constants in C are indicated by the prefix
“0x”.

identifier A name for a variable or function.

10/17/04 – 161 – CodeCheck

indirection The “indirection” operator (*) dereferences a pointer. That
is to say, it yields the value stored in the address to which
the pointer points.

infix operator A binary operator is “infix” if it is written between its
operands. For example, the logical and operator (&&) is
infix. See also “prefix” and “postfix”.

initializer A declaration in the C language may include an initial
value for the variable that is declared. This value is its
“initializer”.

ISO International Standards Organization.

lexical analysis A compiler is performing “lexical analysis” of source code
when it is reading characters and collecting them into to-
kens (e.g. names, numbers, strings, operators).

linkage An identifier has “external linkage” if it is supposed to re-
fer to the same object in each module in which it is de-
clared. An identifier has “internal linkage” if it refers to a
different object in each module.

lint This is the name given in the early days of C to a utility
program that performed basic error-checking (i.e. lint-pick-
ing) on C source files. As C compilers have evolved so-
phisticated error-checking abilities of their own, lint pro-
grams have either become obsolete or have evolved into
specialized error-checking niches.

little endian A computer is “little endian” (as opposed to “big endian”)
if the low-order (“end”) byte in a word has a smaller ad-
dress than the high-order byte. The VAX and Intel 80x86
families are little endian, while the Motorola 68000 family
is not. Synonym: right-to-left.

lvalue An “lvalue” (pronounced el-value) is an expression that
refers to a region of memory that can be examined or al-
tered. So-called because it is a value that can appear on the
left side of an assignment.

macro A macro is an expression that, in form, resembles a cons-
tant or a function call. However, the C preprocessor re-

CodeCheck – 162 – 10/17/04

places every macro expression with its appropriate C ex-
pansion before compilation.

manifest constant A constant (in any computer language) is “manifest” if (a)
its meaning is clearly apparent, and (b) its value never
changes. Manifest constants are best created in C with the
#define preprocessor directive.

module The term “module” in C usually refers to a source file and
all of its associated include files. Each module of a C pro-
gram is compiled independently.

nil Empty. Frequently used by former Pascal programmers as
a synonym for “null”.

null pointer A pointer whose value is not the address of any object. By
convention, the address stored in a null pointer is zero.
The fact that such a pointer actually points to address 0 is
purely coincidental. Beware: in some machines the null
pointer is not zero.

null statement C permits a statement to be empty — the null statement
consists of a single semicolon.

null string An empty character string.

octal Base 8 numbers. The digits are: {0, 1, 2, 3, 4, 5, 6, 7}. In older
versions of C the digits 8 and 9 are also allowed, for rea-
sons that surpass understanding. Warning: octal constants
in C are indicated by the prefix digit “0”. Thus 010 is the
same number as 8 (decimal).

overflow The result of an arithmetic operation is said to “overflow”
when the result is too large to represent using the speci-
fied type.

overload An identifier has been “overloaded” if it is used for more
than one purpose within a single block. Overloading is
permitted (but not recommended) in certain specific con-
texts in C. In the worst case a single name can simultane-
ously refer to a macro, a statement label, a structure tag, a
component name, and a variable name. In C++ the over-
loading is carried to even greater extremes.

10/17/04 – 163 – CodeCheck

PCC The Portable C Compiler. This C compiler from Bell Labs
implemented a version of the K&R standard, and served
as the starting point for many commercial C compilers.

pointer A variable whose value is an address.

postfix operator A unary operator is “postfix” if it is written after its
operand. The subscript selection operator (square brack-
ets) is postfix. See also “prefix” and “infix”.

pragma ANSI C allows the new preprocessor directive #pragma,
which is used to supply implementation-defined informa-
tion to the compiler.

prefix operator A unary operator is “prefix” if it is written before its oper-
and. The negation operator (–) is prefix. See also “postfix”
and “infix”.

preprocessor Unlike almost all other high-level languages, the C lan-
guage has a built-in preprocessor which manipulates the
source code in advance of actual compilation. The C pre-
processor is primarily used for (a) expanding macro ex-
pressions into true C code, (b) inserting other files into the
compilation stream, (c) controlling conditional inclusion of
code, and (d) perpetrating sly programming tricks on poor
unsuspecting compilers.

prototype A new and welcome addition to the C language, a function
prototype is a declaration which specifies the type of each
of its formal parameters, and the type of its return value.

pseudo-unsigned C compilers may treat the type char as either signed or
unsigned. Unfortunately, compilers may also treat this
type as “pseudo-unsigned”, meaning that its value is
never negative but it is treated as though it were signed
during type conversions. Ugly.

rule If-statements are called “rules” in some computer lan-
guages (and especially in expert systems) if they satisfy
these conditions: (a) the rules are not part of the program
(i.e. they are data, not code), and (b) the rules are not or-
dered.

CodeCheck – 164 – 10/17/04

scope The “scope” of a declaration is the set of statements
throughout which the declaration is active. Note: a decla-
ration may not be “visible” within all statements of its
scope. See “visibility” and “extent”.

semantics A compiler is performing semantic processing when it is
attaching meaning to the grammatical forms that are de-
tected during syntactic analysis.

signal A “signal” is an asynchronous event that requires special
handling. Signals may be “raised” by the computer’s error
detection mechanism, by the program itself, or by events
external to the program.

signal handler A “signal handler” is a C function that is invoked when its
signal is “raised”. For example, an arithmetic overflow
handler is a function that might allow a graceful exit to oc-
cur from a numerical computation when an overflow oc-
curs.

storage class A declaration can be modified by giving it a storage class
specifier. The C storage classes are: auto, extern,
register, static, and typedef. In C++ typedef is
not a storage class.

syntactics A compiler is performing syntactic analysis when it is
reading a sequence of tokens and parsing them into gram-
matical patterns. Syntactic analysis follows lexical analysis,
and precedes semantics.

token The smallest unit of text recognized by a compiler, e.g. the
keyword “else”, the operator “+=”, and the semicolon “;”.

trigraph For the sake of keyboard devices that do not have the full
complement of C characters, the ANSI standard allows the
use of “trigraphs” to represent the missing characters. Each
trigraph is a three-character sequence beginning with “??”.

unary An operation is “unary” if it operates on exactly one
operand.

underflow The result of an arithmetic operation is said to
“underflow” when the result is too small to represent us-
ing the specified type.

10/17/04 – 165 – CodeCheck

visibility A declaration for an identifier is “visible” within a C pro-
gram if the identifier is still associated with the declara-
tion. Visibility is lost when the declaration is hidden by
another declaration of the identifier in an inner block. See
“scope” and “extent”.

void The absence of a quantity (not the quantity zero). A func-
tion which returns “void” is a function which returns no
value at all. A “pointer to void” is the generic undefined
pointer to data in ANSI C.

volatile In ANSI C, a variable may be declared “volatile”, meaning
that it must be treated with great care by optimizing com-
pilers.

whitespace Source characters that consist of blank, tab, and return
characters. In some contexts a comment also counts as
whitespace.

xor The exclusive “or” operation.

yacc “Yet Another Compiler Compiler”. This is a program that
takes as input a BNF description of a language grammar
and produces as output a parser for that language.

CodeCheck – 166 – 10/17/04

8.2 Bibliography

AN90 X3J11 Technical Committee (1990) American National Standard for
the Programming Language C. American National Standards Institute.

AN95 Doc No:X3J16/95-0087 (1995) Working Paper for Draft Proposed
International Standard for Information Systems - Programming
Language C++ CBEMA, 1250 Eye Street NW, Suite 200, Washington
DC 20005

AN96 Doc No:X3J16/96-0225 (1996) Working Paper for Draft Proposed
International Standard for Information Systems – Programming
Language C++. ITIC, 1250 Eye Street NW, Suite 200, Washington DC
20005

CDS86 Conte, SD, Dunsmore, HE, and Shen, VY (1986) Software Engineering
Metrics and Models. Benjamin.

DM87 DeMillo, RA, McCracken, WM, Martin, RJ and Passafiume, JF (1987)
Software Testing and Evaluation. Benjamin/Cummings.

GS96 Glass, G and Schuchert B(1996) The STL <Primier>. Prentice Hall.

GC87 Grady, RB and Caswell, DL (1987) Software Metrics: Establishing a
Company-Wide Program. Prentice-Hall.

ES90 Ellis, MA, and Stroustrup, B (1990) The Annotated C++ Reference
Manual. Addison-Wesly.

POSIX.1 IEEE Technical Committee on Operating Systems (1990) Information
Technology — Portable Operating System Interface — Part 1: System
Application Program Interface (API) [C Language]. ISO/ IEC 9945-1;
IEEE Std 1003.1-1990. Institute of Electrical and Electronic Engineers.

MH77 Halstead, MH (1977) Elements of Software Science. Elsevier.

HS84 Harbison, SP and Steele, GL (1984) C: A Reference Manual. Prentice-
Hall.

HS88 Harbison, SP and Steele, GL (1987) C: A Reference Manual, 2nd Edi-
tion. Prentice-Hall.

10/17/04 – 167 – CodeCheck

HS91 Harbison, SP and Steele, GL (1991) C: A Reference Manual, 3rd Edi-
tion. Prentice-Hall.

MRH90 Horton, MR (1990) Portable C Software. Prentice-Hall.

RJ88 Jaeschke, R (1988) Portability and the C Language. Hayden Books.

KR78 Kernighan, BW and Ritchie, DM (1978) The C Programming Lan-
guage. Prentice-Hall.

KR88 Kernighan, BW and Ritchie, DM (1988) The C Programming Lan-
guage, 2nd Edition. Prentice-Hall.

AK89 Koenig, A (1989) C Traps and Pitfalls. Addison-Wesley.

OL86 Lecarme, O and Gart, ML (1986) Software Portability. McGraw-Hill.

MSD92 Meyers, SD(1992) Effective C++. Addison-Wesley.

MSD96 Meyers, SD(1996) More Effective C++. Addison-Wesley.

OS95 ObjectSpace(1995) STL<ToolKit>. ObjectSpace

PS81 Perlis, A, Sayward, F and Shaw, M (1981) Software Metrics: An Anal-
ysis and Evaluation. MIT Press.

TP84 Plum, T (1984) C Programming Guidelines. Prentice-Hall.

TP89 Plum, T (1989) C Programming Guidelines, 2nd Edition. Prentice-
Hall.

RC90 Rabinowitz, H and Chaim, S (1990) Portable C. Prentice-Hall.

BS91 Stroustrup, B (1991) The C++ Programming Language, 2nd Edition.
Addison-Wesley.

BS97 Stroustrup, B (1997) The C++ Programming Language, 3rd Edition,
Addison-Wesley.

VW88 Vincent, J, Waters, A, and Sinclair, J (1988) Software Quality Assur-
ance, Volume 1. Prentice-Hall.

CodeCheck – 168 – 10/17/04

8.3 Index

"-D, 22
analysis

lexical, 150
semantic, 153
syntactic, 153

ANSI, 148
array initializer, 48
ASCII, 148
assembler, 20, 36
AT&T C++, 4
backslash, 37
binary decision point, 99
bitfield, 49, 50
bitwise, 148
BNF, 148
boolean, 68
Borland, 4, 84
braces, 70
C++, i, v, 1, 4, 5, 9, 10, 11, 16, 19, 21, 22,

24, 38, 47, 55, 66, 68, 75, 76, 83, 84, 92,
93, 95, 133, 135, 149, 151, 153, 155, 156

dialects, 4
example rules, 133

cast, 148
CCEXCLUDE, 6
CCRULES, 2, 10
characters

constants, 32
nonstandard, 30
pseudo-unsigned, 49, 152
standard, 30
trigraph, 31
underscore, 29
wide, 38

cnv_any_to_ptr, 28
cnv_ptr_to_ptr, 28
CodeCheck

predefined constants, 20
CODECHECK, 20
CodeWarrior, 4
comma, 69

operator, 105, 110, 111
separator, 69

command line, 1
comment

//, 75
macro, 42

nested, 4, 75
Compiler Drift, 14
complexity, 99
Concatenation, 36
conjunction, 148
const, 84
constants

hexadecimal, 35
manifest, 32, 67, 151
octal, 35
predefined, 20

Continuation, 37
dcl_3dots, 52
dcl_all_upper, 62
dcl_any_upper, 29
dcl_auto_init, 48
dcl_base, 25, 49, 50, 54, 65
dcl_base_name(), 26, 65
dcl_bitfield, 50
dcl_bitfield_anon, 50
dcl_bitfield_arith, 50
dcl_bitfield_size, 50
dcl_count, 51
dcl_cv_modifier, 84
dcl_empty, 50
dcl_enum_hidden, 62
dcl_explicit, 85
dcl_extern, 59, 65, 83
dcl_extern_ambig, 30, 59
dcl_first_upper, 62
dcl_from_macro, 65
dcl_function, 52, 53, 54
dcl_global, 26, 59, 65, 83
dcl_hidden, 62, 65
dcl_Hungarian, 66
dcl_ident_length, 59, 81
dcl_init_arith, 49
dcl_initializer, 54, 83
dcl_label_overload, 62
dcl_level(), 25, 52
dcl_level_flags(), 26
dcl_levels, 25
dcl_local, 26, 59, 66
dcl_name(), 25
dcl_need_3dots, 52

10/17/04 - 169 - CodeCheck

dcl_no_specifier, 82
dcl_not_declared, 82
dcl_oldstyle, 52
dcl_parm_hidden, 57
dcl_signed, 66
dcl_simple, 54
dcl_static, 54, 59, 66
dcl_template, 83
dcl_typedef, 53, 63, 66
dcl_typedef_dup, 53
dcl_underscore, 30, 34
dcl_union_bits, 50
dcl_union_init, 48
dcl_unsigned, 66
dcl_variable, 83
decisions, 99
declarator, 148

abstract, 148
default.cco, 2, 5
defined, 43, 45
dereference, 149
dialect, 4
disjunction, 149
EBCDIC, 149
elif, 43
endian

big, 148
little, 150

end-of-file, 36
ENUM_TYPE, 49
enumerated constant, 49
environment

CCEXCLUDE, 1
CCRULES, 1
CIncludes, 1
INCLUDE, 1

escape, 149
escape codes, 31
Escape Sequences, 32
exception, 149
exception handler, 93
exp_not_ansi, 55
exp_operands, 108
exp_operators, 107
exp_tokens, 108
explicit, 85
extensions

Borland, 4, 84
C++, 4
CodeCheck, 8
HP/Apollo, 4

Intel, 84
Metaware, 4, 45, 84
Microsoft, 4, 51, 84
MPW C, 51
Symantec, 4
Think C, 51
Vax, 4, 45

extent, 149
extern, 59, 65, 83, 153
far, 63, 84
fcn_com_lines, 90
fcn_decisions, 100
fcn_exec_lines, 90
fcn_H_operators, 96
fcn_high, 94
fcn_low, 94
fcn_nonexec, 94
fcn_operands, 96, 108
fcn_operators, 96, 108
fcn_tokens, 96, 108
fcn_total_lines, 90
fcn_u_operands, 96
fcn_uH_operators, 96
fcn_white_lines, 90
file

listing, 4, 6
object, 2
project, 2
prototypes, 6
rule, 2, 5
stderr.out, 4

flowchart, 100
flowgraph, 100
Gnu C, 55
Hall, Mark R., 156
Halstead, Maurice, 95
Harbison, S.P., 155, 156
header files

search path, 3
suppress checking, 6

hexadecimal, 149
huge, 84
Hungarian prefixes, 63
identifier, 149
identifier(), 37
idn_global, 26
idn_local, 26
idn_member, 26
idn_parameter, 26
indentation, 70
indirection, 150
infix, 150

CodeCheck – 170 – 10/17/04

initializer, 150
initializers

array, 48
Installation, 1
Intel, 84
ISO, 16, 150
Jaeschke, Rex, 156
Kernighan, B.W., 156
keyword(), 37, 52
Koenig, Andrew, 13, 156
labels, 83
lex_ansi_escape, 33
lex_assembler, 37
lex_backslash, 37
lex_bad_call, 41
lex_big_octal, 33
lex_char_empty, 33
lex_char_long, 33
lex_cpp_comment, 75
lex_float, 35
lex_hex_escape, 32, 33
lex_initializer, 68, 76
lex_invisible, 38
lex_lc_long, 74
lex_long_float, 35
lex_nl_eof, 36
lex_nonstandard, 30
lex_not_KR_escape, 33
lex_not_manifest, 67, 76
lex_null_arg, 41
lex_num_escape, 32, 77
lex_punct_after, 69
lex_punct_before, 69
lex_radix, 35
lex_str_concat, 36
lex_str_length, 59
lex_str_macro, 44
lex_str_trigraph, 31
lex_suffix, 35, 74
lex_trigraph, 31
lex_unsigned, 35
lex_wide, 38
lex_zero_escape, 32
lexical, 150
lexical guidelines, 29
lin_continuation, 71
lin_continues, 69
lin_dcl_count, 82, 89
lin_end, 89
lin_has_code, 89, 108

lin_has_comment, 82, 89
lin_header, 89
lin_include_kind, 89
lin_include_name(), 89
lin_indent_space, 71
lin_indent_tab, 71
lin_is_comment, 89
lin_is_exec, 89, 108
lin_is_white, 89
lin_length, 59
lin_nest_level, 2, 71
lin_nested_comment, 75
lin_number, 90
lin_operands, 96, 108
lin_operators, 96, 108
lin_preprocessor, 89
lin_source, 90
lin_suppressed, 89
lin_tokens, 96, 108
linkage, 150
lint, v, 150
logic structure, 100
long float, 34
lvalue, 150
machismo, 13
macro, 150
macros

predefined, 20
maintainability, 99
manifest constants, 67
McCabe, 100
Metaware, 4, 84
Metrowerks, 4
Microsoft, 4, 51, 84
mod_com_lines, 90
mod_decisions, 100
mod_exec_lines, 90
mod_functions, 98
mod_H_operators, 97
mod_high, 94
mod_low, 94
mod_macros, 98
mod_nonexec, 94
mod_operands, 97, 109
mod_operators, 97, 109
mod_tokens, 97, 109
mod_total_lines, 90
mod_u_operands, 97
mod_uH_operators, 97
mod_white_lines, 90
module, 151

10/17/04 - 171 - CodeCheck

MPW C, 51
typedef names, 53

mutable, 85
near, 63, 84
nested

comments, 75
header files, 59
logic, 103

nested:. if directives
newline, 36
NUXI, 33
octal, 151
op_base(), 27
op_cast, 27
op_declarator, 69
op_executable, 69
op_high, 69
op_infix, 69
op_level(), 27
op_level_flags(), 27
op_levels(), 27
op_low, 69
op_medium, 69
op_operands, 27
op_postfix, 69
op_prefix, 69
op_space_after, 70
op_space_before, 70
op_white_after, 70
op_white_before, 70
options

–A, 2
–B, 2, 70, 71
–C, 2
–D, 2
–E, 3
embedded SQL, 6
–F, 3
–G, 3
–H, 3
–I, 3
–J, 3
–K, 4, 42
–L, 4
–M, 4
macros, 4
–N, 4
–NEST, 4
nested classes, 4
nested comments, 4
–O, 4
–P, 5

progress, 5
prototypes, 6
–Q, 5
–R, 5
rule file, 5
–S, 5
–SQL, 6
stderr.out, 4
–T, 6
–U, 6
user defined, 6
–V, 6
variables, 7
–W, 6
–X, 6
–Y, 6
–Z, 6

options:. include files
overload, 151
Parochialism, 13
pascal, 84

Microsoft C, 51
MPW C, 51
Think C, 51
type modifier, 51
type specifier, 51

PCC, 151
Plum,Thomas, 29, 156
pointer, 152

null, 151
portation problem

source, 16
target, 16

postfix, 152
pp_ansi, 45
pp_arg_count, 41, 60
pp_arg_paren, 78
pp_arg_string, 44
pp_arith, 41
pp_assign, 78
pp_bad_white, 39
pp_benign, 79
pp_comment, 42
pp_defined, 43, 45
pp_depend, 80
pp_elif, 43, 45
pp_empty_arglist, 41
pp_error, 45
pp_if_depth, 60
pp_include, 45
pp_include_depth, 60
pp_include_white, 40

CodeCheck – 172 – 10/17/04

pp_length, 47
pp_lowercase, 68
pp_macro_conflict, 68, 86
pp_macro_dup, 68, 86
pp_overload, 42
pp_paste, 42, 45
pp_pragma, 45
pp_recursive, 46
pp_relative, 47
pp_semicolon, 78
pp_sizeof, 41
pp_stack, 68, 80
pp_stringize, 45
pp_sub_keyword, 46
pp_trailer, 78
pp_undef, 68, 80
pp_unknown, 45
pp_unstack, 80
pp_white_after, 39
pp_white_before, 39
pragma, 152
predefined macros, 20
prefix, 66, 152
preprocessor, 152

argument, 44, 78
arguments, 41, 60
arithmetic, 40
define, 68, 80
defined, 43, 45
elif, 43
if, 40
keywords, 46
semicolon, 78
sizeof, 40, 41
undef, 68, 80
whitespace, 39, 40

preprocessor:. elif
prj_com_lines, 91
prj_conflicts, 86
prj_decisions, 100
prj_exec_lines, 91
prj_functions, 98
prj_H_operators, 97
prj_high, 94
prj_low, 94
prj_macros, 98
prj_nonexec, 94
prj_operands, 97, 109
prj_operators, 97, 109
prj_tokens, 97, 109

prj_total_lines, 91
prj_u_operands, 97
prj_uH_operators, 97
prj_white_lines, 91
project, 2
prototype, 152
prototypes

creation, 6
recursive, 46
reserved keywords:, 37
Ritchie, D.M., 156
rule, 152
scope, 152
semantics, 153
signal, 153
signal handler, 153
signed, 66
sizeof, 40
specifier

storage class, 51, 153
type, 51, 84

SQL, 6
standard

K&R, 15
PCC, 15

statement
null, 151

Steele, G.L., 155, 156
stm_bad_label, 56
stm_cases, 92
stm_catchs, 93
stm_cp_begin, 73, 93
stm_depth, 103
stm_end, 93
stm_end_tryblock, 93
stm_is_comp, 74, 93
stm_is_expr, 93
stm_is_high, 93
stm_is_iter, 93
stm_is_jump, 93
stm_is_low, 93
stm_is_nonexec, 93
stm_is_select, 93
stm_labels, 93
stm_lines, 90
stm_never_caught, 93
stm_operands, 96, 108
stm_operators, 96, 108
stm_tokens, 96, 108
storage class, 153
storage classes

10/17/04 - 173 - CodeCheck

pascal, 51
string

null, 151
wide, 38

style, 11
suffix, 66

F, 34
L, 34
U, 34

Symantec, 4
syntax, 153
System Variables, 34
tab stops, 70
tag

enumeration, 149
Think C, 51
token, 95, 153
trigraph, 31, 153
try blocks, 92
type

modifier, 51, 84
specifier, 51, 84

-U, 22
unary, 153
undef, 68, 80
underflow, 153
visibility, 153
void, 154
volatile, 84, 154
whitespace, 39, 40, 154
xor, 154
yacc, 154

