
Page 1

Copyright (c) 1986-2000 Abraxas Software, Inc.

TABLE OF CONTENTS

Table of Contents...1

PREFACE ..5

I. INTRODUCTION...6

1. Typographic Conventions ..6

2. Examples ..7

II. Overview of PCLEX..8

1. History..8

2. What PCLEX Does ..8

III. Command Line and Options...10

1. Command Line Format ..10

1.1 File Name Conventions..10

1.2 Command Line Options ...10

2. Using Command Line Options...11

2.1 Override Output C File Conventions (-c and -C)11

2.2 Ask PCLEX for Help (-h or -H)...12

2.3 Generate Case-insensitive Scanner (-i or -I)12

2.4 Suppress #line Directives in Scanner (-n or -N).............................13

2.5 Override Default Scanner Skeleton (-p or -P)13

2.6 Suppress Default Action (-s or -S) ...13

2.7 Foreign Support for the 8-bit ASCII Character Set (-8).................13

IV. Basic Concepts Revisited...15

1. What is a Programming Language ...15

2. What is a Programming Language Translator..15

3. What are Compilers and Interpreters..16

4. Grammar of a Language...16

Page 2

Copyright (c) 1986-2000 Abraxas Software, Inc.

5. Regular Grammar and Regular Language ...18

6. Regular Expressions..19

7. PCLEX Terminology -- A Short Review ...21

V. Getting Started -- OUR FIRST Example...23

1. Scanner Description File for Word Count Program.....................................23

2. Building the Executable File ..25

3. Sample Session...25

VI. Integrating PCYACC and PCLEX...26

1. PCYACC -- A Parser Generator ..26

2. Parser and Scanner ...26

3. C Header File Generated by PCYACC ..27

4. "yylval" and "YYSTYPE"..27

VII. Dates -- A Second Example..29

1. Problem Statement ...29

2. Developing the Source Language...29

3. Separate the Lexical and Syntactic Parts..30

4. Write the PCLEX Scanner Description..30

5. Write the PCYACC Parser Description ...32

6. Write the Auxiliary C Code ...35

7. Build the Program ..37

8. Build the Program with MAKE ...38

VIII. ANSI C SYNTAX Analyzer--A Third Example ...40

1. Problem Statement ...40

2. Developing the Source Language...40

3. Separate the Lexical and Syntactic Parts..41

4. Write the PCLEX Scanner Description..41

5. Write the PCYACC Parser Description ...52

Page 3

PCLEX Users' Manual - Printed December 11, 2000

6. Write the Auxiliary C Code ...65

7. Build the Program ..66

IX. Principles Behind PCLEX..68

1. Introduction to Formal Languages ...68

2. Regular Expressions...69

3. Regular Languages ...70

4. Non deterministic Finite State Machines (NDFSM)....................................70

5. Deterministic Finite State Machines (DFSM)..71

6. PCLEX -- From Regular Expressions to DFSM..71

X. Writing PCLEX Syntax Descriptions..74

1. Regular Expressions...75

1.1 Operators ..75

1.2 Character Classes ...76

1.3 Repetition ...76

1.4 Arbitrary Character...76

1.5 Alternation and Grouping...77

1.6 Optional Expressions ...77

1.7 Context Sensitivity ...77

2. Actions ...78

3. Ambiguous Rules ...78

4. Definitions..79

5. Context Sensitivity ...80

5.1 Actions and User Subroutines ..80

5.2 Start Conditions..81

5.3 Exclusive Start Conditions...82

5.4 Special Position Anchors ...83

Appendix A. Installation ..84

Page 4

Copyright (c) 1986-2000 Abraxas Software, Inc.

1. System Requirements ...84

2. Making Working Copies ..84

3. Installing PCLEX ...84

Appendix B. Error Messages..86

Appendix C. Extending and Customizing Scanners ..90

1. Macros..90

2. Variables...91

3. Functions ..91

4. Scanner Skeleton Format ...92

Appendix D. Bibliography ...93

Appendix E. Glossary...95

Appendix F. Differences between LEX and PCLEX...98

Appendix G. Differences between FLEX and PCLEX ..99

Index ..100

Page 5

Copyright (c) 1986-2000 Abraxas Software, Inc.

 PREFACE

ABRAXAS PCLEX is a program generator for writing lexical scanners. Lexical
scanners read a stream of characters and divide it into identifiers, keywords, and other
symbols of the target language. PCLEX translates a scanner written in the Scanner
Description Language (SDL) into the host language C. SDL is a high level language
oriented towards string matching. It is a special purpose language; where the generality
of a programming language is needed, scanner descriptions can be extended with code
sections written in C. SDL allows software developers to concentrate on what the
scanner recognizes instead of getting bogged down in the details of how. It reduces the
work necessary to bring a project to completion. Programs are done sooner with fewer
errors and updates are simplified.

PCLEX is source file compatible with ‘classic’ AT&T UNIX LEX, uses the faster FLEX
algorithms, and has a command line format similar to PCYACC. It is self-contained and
does not require additional source, object, or library files. PCLEX generated scanners
integrate easily with PCYACC generated parsers. PCLEX used with Abraxas Object
Oriented Toolkit is capable of generating C++, Java, Pascal, Delphi, and Visual Basic.

Page 6

Copyright (c) 1986-2000 Abraxas Software, Inc.

I. INTRODUCTION

This manual describes the ABRAXAS PCLEX features and gives examples of both
standalone text processing programs and lexical scanners. It is both a tutorial on LEX use
and the reference manual for ABRAXAS PCLEX. It is useful for all users from novices
to experienced software professionals.

1. Typographic Conventions

PCLEX is largely independent of the characteristics of the hardware it is running on. It
has been adapted for most microcomputer systems and can be easily adapted for others.
Therefore, the presentation also is largely system independent. Where a specific system
is used to make the discussion concrete, an IBM-PC/XT running MS-DOS is used. In the
appendix, there are tips on system dependent characteristics of PCLEX, including
installation and hardware and software requirements.

Throughout this manual, the following typefaces and syntax conventions are used to aid
clarity:

1). Words or phrases that have important technical meanings or that have special
interpretations in PCLEX will be underlined when they first appear. Definitions and/or
explanations are given at this time in the normal text style.

Example: PCLEX programs are written in the scanner description language, or SDL,
which is a high level language for lexical specifications of computer input.

2). When illustrating user-machine interactions, user entered text is in italics. Messages
or prompts from the computer are in normal text. A carriage return is represented as
<CR>.

Example: C>pclex example.l<CR>

3). Displays, such as diagrams or code listings, will be printed in a typewriter-like font.
They will be indented to help you distinguish them from surrounding text.

Example: The following is a small scanner description file that you will see again later in
the tutorials:

letter [a-zA-Z]
%%
{letter}+ ECHO;
. ;

4). Special meaning characters or strings will be bolded to help you distinguish them from
surrounding text.

Example: Regular expression [a-zA-Z] matches any letter.

Page 7

PCLEX Users' Manual - Printed December 11, 2000

2. Examples

This manual contains three examples: Word Count Program (Chapter V), Date
Program (Chapter VII), and ANSI C Syntax Analyzer Program (Chapter VIII). The
source code of these examples are in the PCLEX [DOS-OS/2] Toolkit Disk under \WC,
\DATES, and \ANSIC directories respectably. Each directory is self-contained,
including all source files, a MAKEFILE for UNIX style MAKE programs, and makefile
files for Microsoft C 7.0's MAKE. The disk contains one more example called
DIGRAPH under \DIGRAPH directory. The purpose of DIGRAPH is explained in
Chapter X, however, the completed example is not included in this manual.

Page 8

Copyright (c) 1986-2000 Abraxas Software, Inc.

II. OVERVIEW OF PCLEX

This chapter gives a brief overview of PCLEX, its origin, history, and evolution, and a
description of its operation at an abstract level.

1. History

PCLEX is an descendent of FLEX (Fast LEX), which is an improved version of LEX.
LEX was first publicly described in an article by Michael Lesk and Eric Schmidt. The
article is one of the most widely cited in computer literature. That version of LEX was
designed, coded, and debugged by Eric Schmidt, based on ideas from Stephen C.
Johnson and Alfred Aho. FLEX was programmed by Vern Paxson and Kevin Gong,
based on ideas developed by Van Jacobson. FLEX added some useful additional
features and significantly speeded up both the generated scanners and scanner generation.
LEX (and more recently FLEX) has been part of the standard language tools provided in
the UNIX operating system environments.

During the past decade or so, numerous software projects, both large and small, have
been developed with LEX. As such, LEX has historically been one of the most valuable
tools available to application and programming language developers. LEX can drastically
reduce the time and complexity normally involved in program and compiler
development. Compiler writing tools like LEX provide developers with a powerful aid to
writing compilers, command interpreters, and other programs with text input.

Because LEX is such a useful tool, many software developers have ported it to their own
systems, or re-implemented it in their own software environments. PCLEX is an
example of an implementation of FLEX on micro computers (IBM PC's and
Macintosh's).

PCLEX is designed and implemented to be upward compatible with LEX and FLEX.
All of the features of LEX are retained in PCLEX, including the improvements from
FLEX. Although PCLEX has an almost identical programming interface with LEX,
there are quite a few differences, which will become clear as we go along.

2. What PCLEX Does

PCLEX is a computer program. Like most other programs, it takes input, computes
values, and produces output. It is a translator, i.e., its input is in one language (SDL) and
its output is in another (C). Program generators are programs that translate from a very
high level language that is tailored to one area of programming or computing to a lower
level language, usually a general purpose programming language like C. LEX and
YACC, which is the acronym of "Yet Another Compiler-Compiler", are program
generators for writing compilers. Compilers are translators from a programming
language to a very low level language like assembly language or machine language (i.e.,
object code). PCLEX is written using PCYACC and itself.

Page 9

PCLEX Users' Manual - Printed December 11, 2000

SDL is designed for describing the text input of a program at the lexical level, that is the
basic words and symbols of the input language. SDL is a language for describing
languages, a meta-language. A written language is expressed as a string of characters.
Characters fall into several broad groups: for example, letters, digits, and punctuation.
Identifiers and key or reserved words are built out of characters according to the
convention decided on by the language's designer. For example, identifiers in C can
contain the underscore character ('_'). FORTRAN and Pascal identifiers are limited to
an initial letter and additional letters and digits.

Page 10

Copyright (c) 1986-2000 Abraxas Software, Inc.

III. COMMAND LINE AND OPTIONS

This chapter tells how to run PCLEX, its filename conventions, and the command line
options. PCLEX is command line driven and can be run either from batch procedures or
from the DOS prompt of other programs.

1. Command Line Format

PCLEX retains the flavor of PCYACC's command line interface.

 PCLEX [options] <sdf_name>

Where <sdf_name> is the name of a scanner description file (SDF) and [options]
represents zero or more command line options. If PCLEX is invoked with no arguments,
it outputs a short message advising you of the correct command line format.

1.1 File Name Conventions

The <sdf_name> can be any legal MS-DOS filename. For consistency and clarity, it is
recommended that you pick one extension and stick to it. All examples in this manual
use the extension ".L". The default name of the output file is the basename (the filename
without any extensions) plus the extension ".C". For example, if the input file name is
"EXAMPLE.L", the output file name is "EXAMPLE.C". The output file name can be
changed with the "-c" and "-C" options (see the next section).

1.2 Command Line Options

Command line options are used to override default actions or change the file name
conventions. The available options are:

-c: This option overrides the default output C file name. Instead of using the
basename of the input scanner description file plus the ".C" extension,
PCLEX uses "YYLEX.C" as the output scanner source file name.

-C<cf>: Like -c, this option overrides the default output C file name, but uses the
file name provided by the user in <cf>.

-h: Show a help screen.

-i: Build a case-insensitive scanner. The case of letters in the patterns is
ignored and patterns are matched regardless of case. The matched text in
"yytext", the internal defined character pointer pointing to the matched

Page 11

PCLEX Users' Manual - Printed December 11, 2000

input token, is not altered, the original case of the scanner input is
preserved.

-n: Suppress #line directives in the output scanner source file. This option is
useful if you are trying to use a source code debugger. In normal operation
the output scanner source file uses #line to make the reference to the
original scanner description file, this normally causes source code
debuggers like CodeView to generate strange results.

-p<pf>: Use the user provided scanner skeleton in <pf> instead of the default (see
Appendix C). This option can be used to generate C++ scanners.

-s: This option suppresses the default rule (that unmatched input be written to
"stdout"). With this option, if the scanner finds input that is not matched
by any rules, the scanner program quits with a "pclex scanner jammed"
message.

Only the "-c" and "-C" options are case-sensitive. The rest are the same for both upper
and lower case. For example, "pclex -h" and "pclex -H" are equivalent.

2. Using Command Line Options

This section shows how to use the command line options. The following example,
"EXAMPLE.L", is used throughout this section:

letter [a-zA-Z]
%%
{letter}+ ECHO;
. ;

With no options, PCLEX writes the C output file to "EXAMPLE.C".

2.1 Override Output C File Conventions (-c and -C)

The "-c" and "-C" options override the output C filename convention of PCLEX. With
the "-c" option, the output is written to "YYLEX.C". For example:

C>pclex -c example.l

creates "YYLEX.C" in your current directory.

The "-C" option lets you specify the name of the output file. For example:

C>pclex -Canything.c example.l

creates "ANYTHING.C" in the current directory.

Page 12

Copyright (c) 1986-2000 Abraxas Software, Inc.

2.2 Ask PCLEX for Help (-h or -H)

The two help options, "-h" and "-H", do the same thing. They ask PCLEX to show a
help message on the screen. This display is helpful when you are first learning how to
use PCLEX and later on it is a helpful reminder for infrequently used options.

C>pclex -h

shows the following message:

Abraxas Software (R) PCLEX Version - 8.01 [NT].
Copyright (C) Abraxas Software, Inc. 1986-98, all rights reserved

Usage: pclex options scanner.l
Available options:
-c : use file "yylex.c" for C output
-Cf: use file f for C output
-h : display this help message
-i : case insensitive
-n : do not generate '#line' directive in output
-pf: use skeleton f as scanner driver
-s : suppress scanner output

and,

C>pclex -h example.l

shows the help message and generates the scanner source file EXAMPLE.C.

2.3 Generate Case-insensitive Scanner (-i or -I)

Normally, PCLEX generates scanner that treat upper and lower case letters as distinct.
For example, the pattern "abc" will not match "ABC". This option tells PCLEX to build
a case-insensitive scanner. The case of letters in PCLEX input patterns and the scanner
will be ignored and the rules will be matched regardless of case. The scanner simply
converts all lower case letters in the .L scanner description file into upper case. The
matched text in "yytext" will have case preserved.

The following statement

 letter [a-zA-Z]

can be rewritten as

 letter [a-z]

or

 letter [A-Z]

Page 13

PCLEX Users' Manual - Printed December 11, 2000

with the same scanner behavior if one uses the command line:

C>pclex -i example.l

2.4 Suppress #line Directives in Scanner (-n or -N)

Normally, #line directives are put in the .C output scanner source file to provide a way of
correlating line numbers in compiler error messages with the original line in the input
scanner definition file. This option causes the #line directives to be omitted. Some
source level debuggers handle #line directives incorrectly.

2.5 Override Default Scanner Skeleton (-p or -P)

Normally, the generated scanner is built around the default scanner skeleton. The C
source code for the default skeleton of a scanner program is internal to PCLEX. The
"-p" option allows a custom scanner skeleton to be used. The form of the scanner
skeleton is explained in Appendix C. The default skeleton C source file "LEXSCAN.C"
used to built the internal skeleton is in the \PCLEX directory, available for
customization. For example:

C>pclex example.l

and

C>pclex -plexscan.c example.l

are equivalent. And,

C>pclex -pmyscan.c example.l

will use MYSCAN.C to produce EXAMPLE.C.

2.6 Suppress Default Action (-s or -S)

Each piece of the scanner's input text that is matched by a pattern specified in the scanner
description file has an action associated with it. For scanner input text not matched by
any pattern, the default action is taken. Normally, the default action is to copy the
unmatched text to the output. The "-s" and "-S" options suppress the default action and
treat unmatched input text as an error: the scanner outputs the message "pclex scanner
jammed" on the standard error device (usually the screen) and exits.

2.7 Foreign Support for the 8-bit ASCII Character Set (-8)

By default PCLEX generates 8-bit character scanner which reads input files written in
symbols in the 8-bit ASCII character set. With the -8 option, PCLEX will generate 7-bit
character scanner which can read input files written in symbols in the 7-bit ASCII
character set. If you define hi-bit set characters in your Lexical Definition File (.L), you

Page 14

Copyright (c) 1986-2000 Abraxas Software, Inc.

must define the rules with octal characters, i.e.,characters above octal 177(8) must be
defined as \0200 [200(8)].

Page 15

PCLEX Users' Manual - Printed December 11, 2000

IV. BASIC CONCEPTS REVISITED

This chapter introduces the basic concepts related to PCLEX such as computer
programming languages, translators, interpreters compilers, lexical analyzers, grammar of
languages, and regular expressions. Basic technical terms used in later chapters are also
explained. Some terms are listed to prepare for a more formal discussion of those subjects
in later chapters

1. What is a Programming Language

Computers do an overwhelming and constantly expanding variety of tasks. Nevertheless,
computers are not intelligent. They must be told how to do each task with a set of step by
step instructions, called programs. To do these seeming miracles, someone has to work
out the sequence of steps to accomplish the task in minute detail and present this step by
step program to the computer in a computer language. A programming language is an
artificial language used to write the detailed instructions necessary for the performance of
any task by the computer. Programs of any length are the basic forms in which these
instructions are presented to the computer for execution.

There are two broad classes of programming languages: low level languages like machine
language and assembly language that are machine instruction oriented, and high level
languages like C, Basic, and Pascal that are largely machine independent and are oriented
towards arithmetic and logical operations. Machine language is directly executable by the
computer. Assembly language maps directly into machine language and translation is fast
and easy.

2. What is a Programming Language Translator

A computer can only directly understand programs written in its own language, called
machine language, one kind of low level language. Machine language programs are
written in binary digits. Machine languages are very primitive. Writing programs in
machine language is tedious and very error-prone. Soon after the invention of the
computer, symbolic languages were developed to shift some of the burden of
programming to the computer itself. Instead of writing the program in binary digits,
meaningful names (mnemonics) were given to each of the machine's instructions and the
program can then be written in an easier to read symbolic form. A translation then has to
be done to translate the programs written in symbolic languages to the programs written
in machine languages. At first the translation was done by hand. Later a program, called
translator, was written in machine language to translate symbolic language programs to
machine language programs. After the first such translator was written, programming no
longer needed to be done in machine language. The first symbolic languages were still
very oriented toward the machine's own instruction set (the computer's repertoire of basic
actions). They are called assembly languages, another kind of low level language, and the
translator is called an assembler. Conversely, translators that translate machine language
programs into assembly language programs are called disassemblers.

Page 16

Copyright (c) 1986-2000 Abraxas Software, Inc.

3. What are Compilers and Interpreters

Translation to machine language is not limited to just low-level languages. A high-level
language describes a program in terms that are better matched to the task at hand and
human thought processes. Programs written in high level languages have two different
modes of execution: interpreted execution and compiled execution.

 Compilers are translators between high-level languages and low-level languages. A
compiler translates the source program from a high level language to an object program in
a low level language (either assembly language or machine language). The language in
which source programs are written is referred to as the source language, and the language
in which object programs are composed is referred to as the object language. A
preprocessor translates from a high level language to a similar language. Usually, the
preprocessor's object language is a subset of its source language. Compiled execution
mode is divided into two phases: a compilation phase and an execution phase. During
compilation, a compiler first recognizes the input source program written in the source
language then composes an equivalent object program. written in the object language. In
the execution phase, the object program (in machine language) is executed.

Programs can be written that carry out the source language program actions directly
instead of first translating them to machine language. Such a program is called an
interpreter. Interpreters skip the compilation step. The computer runs the interpreter
machine language program and the interpreter runs the source language program. This
extra layer of program slows down running the source program. Interpreters remove the
compile step from the usual edit-compile-debug cycle of development. In interpreted
execution mode, program statements are decoded and executed one at a time. Each step
includes translation of a statement followed the appropriate machine actions dictated by
the statement.

4. Grammar of a Language

A programming language can be defined in a number of ways, some formal and rigorous,
others casual and illustrative. A very small language may have a finite number of
programs and the language could be defined by listing them all. A more general method
is to describe the grammar of the language, the set of rules that outline what the valid
structures and constructs are and how they are combined. Formal languages, languages
defined with mathematical rigor, provide a solution to the problem of describing infinite
languages in a concise manner, using only a finite number of symbols. The rules for
precise definition of computer languages make up what is called formal grammars.

According to Noam Chomsky, who is well known to computer science community for
his contributions to the study of formal languages, there are four classes of grammar to
generate languages in four levels. The grammars are listed according to increasing
description power and complexity as following: regular grammars, context-free
grammars, context-sensitive grammars and phrase grammars. Subsequent research had
identified four corresponding abstract machine types, which can recognize those strings
written in the languages generated by their respective grammars. Corresponding to the
grammars listed above, these abstract machines or automata are: finite-state automaton,
push-down automaton, linear-bounded automaton, and Turing machine.

Page 17

PCLEX Users' Manual - Printed December 11, 2000

Regular grammars are the most simple kind of grammars, and can be used for a wide
variety of applications. Although they are a bit too simple to describe practical
programming languages, they are good for defining lexical rules for compilers. On the
other end of the spectrum are the so called phrase grammars, which are most complicated
and powerful. Phrase grammars can describe any task that can be done by a computer.

Context-free and context-sensitive grammars are most often used to effectively specify
programming languages in a mechanical manner. For most applications, context-
sensitive grammars are appropriate since most programming languages of practical use
are context-sensitive. However, when considering computational complexities, context-
free grammars are so much easier to handle. They can be most efficiently implemented
as mechanical procedures. Therefore, they are used almost exclusively by computer
science professionals. Most of the real compilers are written first as context-free
grammars which are then mechanically translated into codes.

At the first look it seems that the choice of context-free over context-sensitive a big
compromise, since most of the practical programming languages are context-sensitive.
However, it is possible to single out the context-sensitive components of programming
languages and deal with them separately from pure syntax processing. The syntax part of
any language is always context-free. A common practice is to shift the duty of
processing context-sensitive components to a so called semantic-analysis phase.

A grammar defines a language by explaining which sentences may be formed. It consists
of four components, they are the terminals, the non-terminals, the rewriting rules, and the
start symbol

Terminals, also known as tokens, are the basic building elements of programs. They are
constant symbols because each token represents itself. In a programming language,
terminal symbols are used to write programs. Using C language as an example, key
words such as if, then, else, which, break, continue, return etc., constants such as 10,
2.5, 'y', "text-string" etc., and identifiers such as line_count, line_buffer etc. are all
terminal symbols. The terminal symbols are not further explained in the grammar; they
are the alphabet and words in which the sentences of the language, which the grammar
describes, are written. An alphabet is a finite set of symbols; a word is a sequence of
alphabetic symbols; a sentence is a sequence of words comprising a language; and a
language is a set of words formed from the alphabet.

Non terminals are syntactic variables that can take on different values of strings made up
of non terminals and terminals. The presence of non terminals in a grammar usually
corresponds to important linguistic constructs of the language defined by the grammar. In
a typical programming language such as C, data-declaration, function-declaration,
statement and expression are normally recognized as non terminals.

Productions, or rewriting rules or grammar rules, specify the manner in which the
terminals and non terminals can be combined to form strings. For each non terminal, a
production must exist, and any one of the formulations from this production can be
substituted for the non terminal. A production rule of a grammar consists of a left-hand-
side (LHS) and a right-hand-side (RHS), separated by an arrow:

 U --> V

Page 18

Copyright (c) 1986-2000 Abraxas Software, Inc.

where both U and V are strings of grammar symbols. Various types of grammars are
made by imposing restrictions on U and V. In particular, a grammar rule in a context-free
grammar has the following form:

 X --> X1 X2 ... Xn

where the left-hand-side of the grammar rule, X, has to be a single, unique non terminal
symbol, and any of the components of the right-hand-side of the grammar rule, Xj , can
be either a terminal or a non terminal. It could even be the left-hand-side, X. The
meaning of such a production rule in a context-free grammar is that wherever X occurs, it
can be rewritten by the sequence of the grammar symbols

 X1 X2 ... Xn

in that order. Also, whenever the sequence

 X1 X2 ... Xn

occurs, it can be reduced to X. The process of replacing the LHS of a production by its
RHS is called a (one step) derivation. The inverse of a derivation, the process of
replacing the RHS of a grammar rule by its LHS, is called a reduction. The replacement
of a sequence of grammar symbols by a non terminal symbol, or vice versa, using
grammar rules can be done without consulting the surrounding text of grammar symbols.
This is why the phrase context-free is used. Again using C language as an example
(taken from the C programming language reference manual):

 statement --> compound-statement
 statement --> expression ';'

This example states that a C statement can either be a compound statement or a
semicolon terminated expression.

The start symbol of a grammar is a distinguished non terminal symbol that normally
signifies the highest level syntax concept of the language being defined. This would be
program in the case of programming languages, or sentence in the case of natural
languages.

5. Regular Grammar and Regular Language

Regular grammars (RE grammars), also called finite-state grammars (FS grammars), are
used to defined regular languages describing the structure of text on the character level.
That is, the terminal symbols in a regular language are single characters. Hence, a right-
hand side in a regular grammar contains at most one non-terminal and regular grammars
tent to be quite big in size depending on the regular language to be defined. However,
all regular grammars can be reduced considerably in size by using the regular expression
notations. In the other hand, a regular expression can be converted into a regular
grammar by expanding it according to the meaning of the operators. Therefore, regular
languages are often described by regular expressions rather than by regular grammars.

Page 19

PCLEX Users' Manual - Printed December 11, 2000

6. Regular Expressions

Regular expressions are string specifiers or pattern descriptions using a pattern
description language, which is a very convenient specification language for the finite state
automaton actually constructed. The characters set used in the language is a subset of the
ASCII characters set. Pattern descriptions are specified by giving special meaning to
certain characters called metacharacters. The following rules are used by PCLEX to
form a regular expressions. The rules are the same as the rules used by UNIX LEX and
FLEX.

1. A single character that is not a metacharacter is a regular expression matching
the single character. Thus, letters, digits, and some special characters represent
themselves.

For example, regular expression A matches the single character A.

2. Two regular expressions concatenated form a regular expression matching the
pattern that a match of the first expression is immediately followed by a match of the
second.

For example, regular expression P and regular expression C form a regular expression PC
which matches the string PC.

3. Two regular expressions separated by a vertical bar ('|') form a regular
expression matches either the preceding expression or the following regular expression.

For example, regular expression RED|GREEN|BLUE matches any of the three words..

4. Two regular expressions separated by a slash ('/') form a regular expression
matches the preceding expression but only if followed by the following regular
expression.

For example, regular expression PC/LEX matches the substring PC in the string
PCLEX. It would not match string PC or PCYACC.

5. A series of regular expressions can be grouped together in a pair of
parentheses ('(' and ')') form a new regular expression.

For example, regular expression (Lind|Brian)a matches both Linda, and Briana.

6. A period ('.') matches any single character except the C new line metacharacter
('\n').

For example, regular expression M. matches strings ME and MY.

7. An up arrow circumflex accent ('^') as the first character of a regular
expression matches the beginning of a line.

For example, regular expression ^ME matches the string ME only if it is the first two
characters on the line.

Page 20

Copyright (c) 1986-2000 Abraxas Software, Inc.

8. A dollar sign ('$') as the last character of a regular expression matches the
end of a line; but not the new line character itself.

For example, regular expression ME$ matches the string ME only if it is the last two
characters on the line.

9. A pair of square brackets ('[' and ']') enclosing a sequence of characters forms
a regular expression called a character class, which matches any of the characters
enclosed in the brackets. Metacharacter '[' marks the start of a character class and
metacharacter ']' marks the end of the character class.

Inside a character class only metacharacters ']', '^', '-', '"', '\', '{', and '}' have special
meaning. Other metacharacters lose their special meaning inside a character class except
C escape characters starting with '\'. Use \{, \}, \], and so forth to put these characters into
a character class.

For Example, regular expression [0123456789] matches any single decimal digit; and,
regular expression [.$] matches a period or a dollar sign.

10. An up arrow circumflex accent ('^') as the first character of a character
class makes a negative character class, which matches any character except the ones
within the brackets.

For example, regular expression [^0123456789] matches any character except a digit
character. And regular expression [^0123456789] matches any digit character or an
circumflex accent.

11. A dash or hyphen ('-') inside a character class or a negative character class
indicates a character range. A '-' as the first character after the '[' matches the
character '-' itself. This provides another why to put the character into the character class.

For example, regular expression [0-9] matches any single decimal digit; it means the
same thing as regular expression [0123456789]. Regular expression [-^] matches a dash
or an up arrow.

12. A quotation mark ('"') regardless inside a character class or not takes away
special meaning of characters up to next quotation marks. Everything within the quotation
marks is interpreted literally; metacharacters other than C character escapes lose their
meaning within the quotation marks.

For example, regular expression "1.5/3.0" matches the string 1.5/3.0.

13. A backslash ('\') regardless inside a character class or not takes away special
meaning of next character. The metacharacter is used to escape metacharacters, and as
part of the usual C character escapes.

For example, regular expression [\t\n\] matches a whitespace character.

14. A pair of curly braces ('{' and '}') regardless within a character class or not
marks the start and the end of a macro name.

For example,

Page 21

PCLEX Users' Manual - Printed December 11, 2000

letter [a-zA-Z]
%%
{letter} ECHO;
. ;

In the example we first define a macro name letter which represents a regular expression
[a-zA-Z] in the definition section of the scanner description file. Later, in the rule
section we refer to the regular expression by calling its macro name using {letter}.

15. Numbers in a pair of braces, {number1, number2}, form an operator which
indicates how many times the previous pattern is allowed to match.

For example, regular expression [0-9]{1,3} matches numbers 0 to 999.

16. A regular expression followed by an asterisk ('*') matches that expression
repeated zero or more times. The metacharacter '*' is a closure operator. A closure
operation has higher precedence than concatenation.

For example, regular expression [0-9][0-9]* matches numbers consist of one or more
digits.

17. A regular expression followed by a plus ('+'), a closure operator, matches that
expression repeated one or more times.

For example, regular expression [0-9]+ matches numbers consist of one or more digits.

18. A regular expression followed by a question mark ('?'), a closure operator,
matches that expression repeated zero or one times.

For example, regular expression Brian?a matches Briana and Brianna.

The precedence of operators in a regular expression is listed from highest to lowest as
following:

 operator description

 () parentheses grouping
 [] character class
 * + ? {} times the pattern is allow to match
 ee concatenation
 | either pattern
 ^ $ beginning and end of line

7. PCLEX Terminology -- A Short Review

PCLEX is a scanner generator, a program that assists in writing lexical scanners. The
scanner is a finite-state automaton or finite state machine (FSM). PCLEX takes an
input scanner description file comprised of regular expressions and associated C codes
(actions), then builds a recognizer program which executes the C code when a certain

Page 22

Copyright (c) 1986-2000 Abraxas Software, Inc.

string is recognized. PCLEX builds the lexical scanner by translating the target
language's lexical syntax description in regular expressions into a C program that
recognizes the symbols or tokens of the target language. The source language of PCLEX
is the scanner description language (SDL). The object language of PCLEX is the
programming language C. Source programs written in SDL are called scanner
description programs (SDP's). Files of SDP are called scanner description files (SDF's).
The function of PCLEX is to translate a GDF into a C file that defines a function. By
convention, the name of the function is yylex(). A target language in a lexical analysis
process is the language described by the scanner description program.

A SDF is made up of three sections, a definition section, a rule section, and a user
subroutine section, in that order. Any or all of the three sections can be empty. If the
user subroutine section is empty, the second "%%" delimiter can be omitted. The first
"%%" delimiter can not be omitted.

Page 23

PCLEX Users' Manual - Printed December 11, 2000

V. GETTING STARTED -- OUR FIRST EXAMPLE

This chapter gives you an idea of how to use PCLEX with a standalone scanner program.
Many simple text processing and statistics gathering programs can be quickly written this
way with the aid of PCLEX. It is assumed that you are already familiar with MS-DOS
and the C programming language. You need an MS-DOS personal computer with
ABRAXAS PCLEX and a C compiler installed to build and run this example. A
programming editor is helpful for making program modifications and experiments.

The basics of the program development process is similar for all standalone PCLEX
programs. This chapter gives an overview of that process. The example program used in
this chapter counts the bytes, words, and lines in a text file. How to build and run the
program will be shown and explained. Later chapters show more complicated examples
with more involved build procedures.

1. Scanner Description File for Word Count Program

The following is the listing of the SDF for the word count program, WC.L. For
reference, line numbers are added to the listing.

001: /*
002: * WC.L - simple standalone PCLEX application.
003: */
004:
005: %{
006: long nchar = 0; /* # of characters */
007: long nword = 0; /* # of words */
008: long nline = 0; /* # of lines */
009: %}
010:
011: %%
012:
013: \n nchar += 2; ++nline;
014:
015: [^ \t\n]+ ++nword; nchar += yyleng;
016:
017: . ++nchar;
018:
019: %%
020:
021: main()
022: {
023: yylex();
024: printf("%d\t%d\t%d\n", nchar, nword, nline);
025: exit(0);
026: }

Page 24

Copyright (c) 1986-2000 Abraxas Software, Inc.

This example, though small, exhibits the typical structure of a PCLEX scanner
description. Lines 001 through 010 form the definition section, where needed header
files are included, global variables declared, and names defined. Lines 012 through 018
make up the rule section where the input patterns to match and their corresponding
actions are defined. Lines 020 through 026 are the user subroutine section with the
necessary support functions written in C. As illustrated by this example, a scanner
description file is made up of three section: a definition section, a rule section, and a user
subroutine section. Any or all of the three sections can be empty.

Lines 001 through 003 are a comment. SDL comments look the same as C comments
and are passed through to the output file intact. The rules for SDL comment placement
are not quite the same as in C. They are explained in detail in Chapter X, section 5.3.

The symbol pairs, "%{" and "%}", on lines 005 and 009 are delimiters used in the
definition section to bracket C code, such as preprocessor directives, global type and
structure definitions, and global variable declarations. In this example, there are three
variable declarations. PCLEX does not look at the code inside these delimiters, it is
passed through to the output scanner source file intact. The code is placed on the top of
the output file so that other parts of the scanner can refer to the data definitions contained
in it.

Line 011 is the delimiter ("%%"), on a line by itself, separating the definition section
from the rule section.

Line 013 says: when an end of line is reached ('\n' is shorthand for new line), add two to
the character counter ("nchar") and add one to the line counter ("nline"). The end of line
in MS-DOS text files is marked by two characters, a carriage return and a line feed
character. The pattern in a rule is everything before the first whitespace (blanks and tabs),
in this case the '\' and 'n' characters. Everything from the whitespace to the end of the line
is the action part of the rule. Each action is a section of C code executed when its pattern
is recognized in the scanner input. Actions can be empty (a null statement in C language,
called an empty action.) Rules normally are just one line long. How to extend the action
over several lines is explained in a later chapter (Chapter VII, section 4).

Line 015 says: when a string of non-whitespace characters are found, increment the word
counter ("nword") and add the length of the matched text ("yyleng") to the character
counter. The pattern matches one or more ('+' operator) occurrences of the class of
characters (square brackets, '[' and ']', enclose character classes) that includes everything
except (an initial '^' operator complements or reverses the contents of a character class) a
space, a tab ('\t' is shorthand for tabs), and ends of lines.

Line 017 is the final rule in the rule section and says: for any character not otherwise
matched ('.' operator matches any single character), increment the character counter.
The blank lines between rules are for readability, they are not required.

The second "%%" delimiter on line 019 separates the rule section from the user
subroutine section. Everything in the user subroutine section is passed intact to the
output file of PCLEX. In this example, the main function calls "yylex()", the scanner
function generated by PCLEX, prints the character, word, and line counts, and exits. The
following discussion will help you understand how to combine what PCLEX produces
with the user subroutines written by the programmer to make a complete C program.

Page 25

PCLEX Users' Manual - Printed December 11, 2000

PCLEX generates C code for a function, "yylex()", and data tables that together read the
input, divide it into matches of the patterns, and execute the corresponding actions.
Technically, the "yylex()" function is a table-driven interpreter that simulates a
Deterministic Finite State Machine (DFSM). DFSM are discussed in more detail in
Chapter IX. The rest of the program must include a "main()" function, do any program
setup and cleanup, and do any additional processing needed.

2. Building the Executable File

To invoke PCLEX on the scanner description file WC.L, issue the following command:

C>pclex wc.l

The result of this operation is a C program. A file with the name WC.C will be created
in the current directory, which is a C program for the Word Count program. To build
the executable version of WC, invoke the C compiler as follows (the example assumes
the Microsoft C compilers):

C>cl wc.c

3. Sample Session

After the executable version of WC is built successfully (in our example, we have a
WC.EXE in the current directory), we can use it to check the size of WC.L. The
following is a sample session of WC at work:

C>wc <wc.l
398 64 26

This example, though simple, contains almost all of the parts of building a program with
PCLEX.

Note, if you take WC.EXE and type

 C>wc < wc.exe

This will lock up the machine or scanner because the executable file is made up by 8-bit
ASCII characters. To build an eight bit scanner use the command

 C>pclex -8 wc.l > wc.c

then type

 C>cl wc.c

now type

 C>wc < wc.exe

and note the machine will not jam.

Page 26

Copyright (c) 1986-2000 Abraxas Software, Inc.

VI. INTEGRATING PCYACC AND PCLEX

1. PCYACC -- A Parser Generator

PCYACC is a compiler-writer, or a parser generator, a program that assists in writing
compilers. A parser is often the front end portion of a compiler. It is a push-down
automaton, or a stack machine, consisting of a stack holding current states, a transition
matrix determining next state according to the current state and next input symbol, a
table of user defined actions executed at certain points in the grammar analyzing, and
finally an interpreter managing the execution.

PCYACC translates a context-free grammar into a C function that recognizes programs
written in the target language defined by the grammar. The source language of PCYACC
is the grammar description language (GDL). The object language of PCYACC is the C
programming language. Source programs written in GDL are called grammar description
programs (GDP) which describes the grammar syntax of the target language.

2. Parser and Scanner

The function of PCYACC is to translate a GDF into a C file that defines a function. By
convention, the name of the function is yyparse(); which calls repeatedly on a lexical
analyzer function yylex() to read input and returns zero or one indicating whether a
sentence was presented in the target language according to the grammar syntax of the
language.

A PCYACC generated parser calls the PCLEX generated scanner "yylex()" for each
token it parses. The parser passes no arguments to "yylex()" and expects an integer
return value. The return value is either a character widened to an integer or one of the
%token values #defined in the C header file generated by PCYACC (see next section).
Note that while PCYACC allows periods in %token names, the C compiler will not.
Periods are okay in non-terminal names since the C compiler will never see them.

A typical scanner action ends with either

return yytext[0]

or

return TOKEN;

where "yytext" is a internal defined character pointer pointing to the matched input text,
and "TOKEN" , representing a specific input stream, is #defined in the C header file
generated by PCYACC.

Further examples of PCLEX/PCYACC interaction are the DATES and ANSI C Syntax
Analyzer programs explained in the next section.

Page 27

PCLEX Users' Manual - Printed December 11, 2000

3. C Header File Generated by PCYACC

Using command line option -d or -D, PCYACC will generated a header file as well as
the C parser file. The header file is used primarily by the lexical analysis routine yylex().
PCYACC will enumerates all of the tokens declared in the grammar, and these
enumerated values are used as messages between yyparse() and yylex().

The header file declares and defines all the global variables and macros shared by the
syntax parser and the lexical scanner. Usually it will define the parser stack type
YYSTYPE, declare the intercommunication variable yylval, and define the terminal
symbols for the scanner and the parser. The definitions generated by PCYACC are used
globally at parse time unless your yylex() routine is local to the grammar.

The -d switch tells PCYACC to produce the header file using the default file name
yytab.h. The -D<hf> switch produces the header file using "hf" as the name. If no <hf>
is provided, PCYACC will use the basename of the grammar description file with an
extension ".h". For more information regarding to PCYACC command line options, see
PCYACC Users' Manual.

4. "yylval" and "YYSTYPE"

The conventional way to pass additional information from the scanner actions to the
parser actions is through the variable "yylval". Its type is "YYSTYPE", the same as the
semantic stack maintained by the parser and accessed through the "$$", "$1", "$2", etc.
variables in the parser actions. For more information regarding to PCYACC symbols,
"$$", "$1", "$2", etc. see PCYACC Users' Manual.

The default type of PCYACC stack is an int. It can be changed by the user in two ways.
The first and easiest is to use PCYACC keyword %union. For example, to use the value
stack to handle three kinds of values, integer numbers, floating point numbers, and
identifiers, the following union definition can be added to the declaration section of the
grammar description file:

%union {
int i;
float r;
char *s;

}
%token DDD
%%

The second way to accomplish the same thing is to define the union type directly in C
syntax, and enclose the definition using the delimiters %{ and %}, as shown below:

%{
typedef union {

int i;
float r;
char *s;

} YYSTYPE;

Page 28

Copyright (c) 1986-2000 Abraxas Software, Inc.

%}
%token DDD

PCYACC will translate the first declaration style into the second declaration style, which
actually appears at the very begin of the generated C code parser:

typedef union {
int i;
float r;
char *s;

} YYSTYPE;
extern YYSTYPE yylval;
#define DDD 257

Note, PCYACC typedefs the parser stack type, YYSTYPE, according to the union
definition in the declaration section of the grammar description file, declares the
intercommunication variable yyval to be of type YYSTYPE, and enumerates the token,
DDD, declared in the grammar description file.

With the -d or -D switch, PCYACC will make a copy of this code section from the
generated C code parser to the header file specified by the switch (see last section).

Page 29

PCLEX Users' Manual - Printed December 11, 2000

VII. DATES -- A SECOND EXAMPLE

This chapter is a continuation of Chapter V. It will help acquaint you with the procedure
and style of program development using PCLEX and PCYACC together and provide
you with some guidelines for project development.

A general guideline for project development using PCLEX and PCYACC is a seven step
process, as follows:

1) define the problem
2) develop a language to express the problem and/or solution
3) separate the source language into lexical and syntactic parts
4) write the PCLEX scanner description
5) write the PCYACC parser description
6) write the auxiliary C code
7) build the executable program

The DATES program is a simple example of PCLEX and PCYACC working together.
The advanced error processing from PCYACC is included in this example. The sources
are in \DATES directory on the EXAMPLES disk.

1. Problem Statement

The problem is recognizing dates after January 1, 0000, and converting them to an
internal form. There are a variety of calendars in use throughout the world. To avoid
complicating the problem too much, only the Gregorian Calendar will be handled. The
Gregorian Calendar (named after Pope Gregory, who oversaw its development) is
currently in use in North America, South America, and Europe. To allow future
extensions to other calendars, the number of days since January 1, 0000, is used for the
internal form.

2. Developing the Source Language

While everyone who uses the Gregorian Calendar agrees on the number of months and
the number of days in each month, there is not agreement on how to write a date. The
U.S. writes dates with the month first, then the day and year. Europe writes the day first,
then the month and year. When the month is spelled out, the spelling differs from
language to language, though they are often recognizable. For this program, only English
months are recognized, though both orders are handled properly.

In the U.S., the short form is punctuated with slashes, for example: 12/31/93, the last day
of 1993. The long form is the month, the day, a comma, and the year, for example:
December 31, 1993. In the short form, the century is almost always left off the year.
Two digit years will be assumed to be in this century (this convention makes short form
clumsy for dates in the first century B.C). The year will always be assumed to be
complete in the long form.

Page 30

Copyright (c) 1986-2000 Abraxas Software, Inc.

In Europe, the short form is punctuated by periods, for example, 31.12.93 is the last day
of 1993. The same date in European long form is: 31 December 1993.

In both forms, the months can be abbreviated to the first three letters. The month is
always capitalized. This restricted set of date conventions allows one program to handle
dates without explicitly specifying the form used. There is sufficient difference between
the forms that a computer program can tell which is used.

3. Separate the Lexical and Syntactic Parts

In isolation, the line between lexical and syntax analysis can be drawn in a number of
places. For consistency with the usual practice in compilers, the scanner will handle
whitespace, full numbers (not just digits), punctuation, and spelled-out months. The
parser will handle form and correctness recognition. Auxiliary C code will handle two
kinds of things. The first task of the auxiliary C code is handling date correctness
checking, month lookup, ASCII to binary conversion, and output. This work is tightly
associated with the parser. The second task of the auxiliary C code is some how
independent from the parser. It handles the real calculation and is therefore more project
dependent. Usually the auxiliary C code that strongly associated with the parser is put
into the last section of the grammar description file. And the C functions that are parser
independent are coded in other files.

4. Write the PCLEX Scanner Description

In the first example shown in Chapter V, the scanner description contained the entire
program. In this example, the SDF contains just part of the program. The parser with
some auxiliary C functions is in the grammar description file (GDF). And the auxiliary
C function doing calculation is in another C file.

001: /*
002: * LEX.L - lexical analyzer for DATES program
003: */
004: %{
005: #include <stdlib.h> /* atoi() */
006: #include "dates.h" /* token definitions */
007: extern int yylval; /* defined by PCYACC */
008: int yylineno; /* inputed line counter */
009: #define MON(x) { yylval = x; return MONTH; }
010: %}
011:
012: %%
013:
014: Jan("."|uary)? MON(1); /* months */
015: Feb("."|ruary)? MON(2);
016: Mar("."|ch)? MON(3);
017: Apr("."|il)? MON(4);
018: May MON(5);
019: Jun("."|e)? MON(6);

Page 31

PCLEX Users' Manual - Printed December 11, 2000

020: Jul("."|y)? MON(7);
021: Aug("."|ust)? MON(8);
022: Sep("."|tember)? MON(9);
023: Oct("."|ober)? MON(10);
024: Nov("."|ember)? MON(11);
025: Dec("."|ember)? MON(12);
026:
027: [0-9]+ {
028: yylval = atoi(yytext);
029: return NUMBER;
030: }
031: [\t] ; /* discard whitespace */
032: \n {
033: ++yylineno;
034: return '\n';
035: }
036: . return yytext[0];

Lines 005 and 006 include the necessary header files: "stdlib.h" for the prototype of
"atoi()", and "dates.h" for the #defines for the token labels, "MONTH" and
"NUMBER". Header file "dates.h" can be produced by invoking PCYACC with -d
switch.

Line 007 is for "yylval", a variable used to pass additional information to the parser.
The variable is for communication between the syntax parser and the lexical analyzer. It
is predefined as a global variable by PCYACC in yyparse(). Variable yylval has the
same type as the PCYACC stack, YYSTYPE. Line 007 listed here is for better
explanation. It could be omitted since in the header file generated by PCYACC, yylval
is always declared to be:

 extern YYSTYPE yylval;

right after the definition of YYSTYPE. In our example only integer value stack is used.
Therefore, we don't need to redefine the parser stack type YYSTEPE.

Line 008 defines the variable yylineno used to count the lines scanned of the input.

Line 009 defines a macro used in the action for all the months. The definition saves
typing (nice!) and ensures that all months behave the same (important!).

The "%%" delimiter standing along on line 012 separates the definition section from the
rule section.

Lines 014 through 025 handle the months and their abbreviations, both with and without
a period. The period has a special meaning in patterns and must be enclosed in double
quotes to match itself. The question mark after the right parenthesis indicates that the
part of the pattern inside the parentheses is optional. The parentheses enclose two
alternatives separated by the vertical bar ('|'). The pattern "Jan("."|uary)?" is equivalent
to the three patterns: "Jan", "Jan"."", and "January".

Page 32

Copyright (c) 1986-2000 Abraxas Software, Inc.

The pattern on line 027 matches integers. The action spans lines 027 through 030.
Multi-line actions are enclosed in braces to form a C compound statement. The current
matched text is pointed by the PCLEX predefined character pointer "yytext". The binary
equivalent is assigned to "yylval", a PCYACC predefined global variable, for use by the
parser.

Line 031 matches and discards blanks and tabs. Every action so far ends with a "return"
statement. "yylex()" returns a token with each call by the parser. In the WC example, all
processing was controlled by the scanner. In this example, the parser is the center of
control. If the action for a pattern does not return to the parser, scanning continues and
the next pattern match is found. The empty action for the "[\t]" pattern does nothing
and the parser does not see whitespace. This idiom is a common one. Whitespace,
comments, and ends of line are ignored in the grammar of most modern programming
languages.

Unlike modern programming languages, this example program expects one date per line.
Ends of lines are not ignored: the line counter, "yylineno", is updated and the scanner
returns a token to the parser.

Line 036 is a catchall. The pattern matches any other single character and returns it to the
parser. This is also a common idiom to pass off handling invalid characters and single
character operators and punctuation. The parser will handle all of these directly.

5. Write the PCYACC Parser Description

The parser for the DATES program is built with ABRAXAS PCYACC. With minor
changes, it should work with YACC or any of its clones and work-alikes. The PCYACC
specific parts are noted in the explanation below.

001: /*
002: * DATES.Y: grammar for U.S. and European dates
003: */
004: %{
005: #include <stdio.h> /* for fprintf() */
006: %}
007:
008: %token MONTH NUMBER

/* will be defined in dates.h */

009: %start input
010:
011: %%
012:
013: input
014: : /* empty file is legal */
015: | input date '\n'
016: | input error '\n' { yyerrok; }
017: ;
018:

Page 33

PCLEX Users' Manual - Printed December 11, 2000

019: date
020: /*
021: * U.S. text form
022: */
023: : MONTH day ',' year { date($1, $2, $4); }
024:
025: /*
026: * European text form
027: */
028: | day MONTH year { date($2, $1, $3); }
029:
030: /*
031: * U.S. short form
032: */
033: | month '/' day '/' year { date($1, $3, $5); }
034:
035: /*
036: * European short form
037: */
038: | day '.' month '.' year { date($3, $1, $5); }
039: ;
040:
041: day
042: : NUMBER
043: ;
044:
045: month
046: : NUMBER
047: ;
048:
049: year
050: : NUMBER
051: ;
052:
053: %%
054:
055: extern int yylineno; /* defined in lex.l */
056: extern int yyparse(void);
057: extern int days(int, int, int);
058:
059: /*
060: * main(): main routine for the program
061: */
062: main()
063: {
064: yylineno = 1;
065: printf("\nInput a date: ");
066: yyparse();
067: }
068:
069: /*
070: * date(): generic date action routine

Page 34

Copyright (c) 1986-2000 Abraxas Software, Inc.

071: */
072: static void date(int month, int day, int year)
073: {
074: printf("%d/%d/%d\n", month, day, year);
075: days(month, day, year);
076: }
077:
078: /*
079: * yyerror(): error reporting routine
080: */
081: void yyerror(char *s)
082: {
083: fprintf(stderr, "%s\n", s);
084: }

Grammar Definition Files (GDF), like scanner definition files, are divided into three
sections by "%%" lines. For GDF, the sections are: the declaration section (lines 001
through 010), the grammar rule section (lines 012 through 052), and the program
section (lines 054 through 084). The declaration section contains comments, in-line C
code within "%{" and "%}" lines, token declarations, and the goal symbol declaration.
More complex grammars can have additional types of declarations.

The file "stdio.h" #included on line 005 defines the prototype for "printf()" which is
used in "main()", "date()", and "fprintf()" used in "yyerror()".

The "%token" declaration on line 008 introduces the two tokens (terminal symbols),
MONTH and NUMBER, used in the parser that are not character literals. PCYACC
will sequentially assign values, starting from 257, to these tokens and #define them in the
C header file, "dates.h". The C header file is #included in the scanner description file
for these constants. The lexical scanner defined by the scanner description file, LEX.L,
will return the corresponding token values to the syntax parser upon the lexical analyzing
(see lines 014 through 025 and line 029 in the LEX.L file of last section.). Integer
values 1 to 256 are reserved for the ASCII characters. In the case that the lexical scanner
returns a single symbol to the parser, it just returns the ASCII value of the symbol.

The goal symbol, "input", for the grammar is declared on line 009. The declaration on
line 009 is strictly speaking unnecessary. Token declarations are required by PCYACC
to allow it to check the grammar for consistency, similar to requiring a variable to be
declared before use. The goal symbol defaults to the first non-terminal that does not
appear on the right hand side of a production. It is explicitly declared for safety.

The grammar rule section consists of a number of grammar rules. Each grammar rule has
a left hand side (LHS), which is a nonterminal symbol, a ':' operator separating the left
hand side and the right hand side, a right hand side (RHS), which is a sequence of zero
or more grammar symbols, and a semicolon indicating the end of the rule. An action
coding in C language is attached to a grammar rule using braces ('{' and '}'). Actions
should come before the grammar rule terminator (';'). A collection of grammar rules
with a common LHS are the syntactic alternatives of the nonterminal symbol and can be
grouped together. In this case, the common nonterminal symbol appears on the left hand

Page 35

PCLEX Users' Manual - Printed December 11, 2000

side of a colon, followed by a sequence of right hand sides separated by vertical bars ('|'),
and terminated by a semicolon.

Actions are C language statements enclosed in curly brackets. Grammar symbols (both
terminals and nonterminals) appearing in a grammar rule can possess values. The values
of grammar symbols can be referenced from within action statements associated with the
rule. The conventions $$ represents the value of the LHS nonterminal symbol of a
grammar rule, $1 represents the value of the first grammar symbol of the RHS, $2 the
value of the second symbol of the RHS, etc.

The "error" on line 016 is a special terminal symbol predefined by PCYACC. It can be
used in a GDF like a terminal symbol. The "error" symbol is generated internally. The
parser will take "error" to be the next terminal symbol if the actual next terminal symbol,
produced by a call to the lexical scanner, leads to an error operation for the current state.

The PCYACC predefined macro "yyerrok" on line 016 tells the parser to return to the
normal state when it take "error" to be the current terminal symbol.

The main routine, main() runs from line 062 to line 067. It first initiates the line number
counter yylineno to be 1 and guides the user input a date. The most important task of
main routine is calling yyparse(), the LR parser generated by PCYACC. yyparse() is
called to work on the inputted date, it intern calls yylex() asking for the input data.
yyparse() returns a zero if the parsing process is successful. A non zero value is returned
if an error situation occurs during the parsing.

The second function, date(), prints the inputted data and invokes days() to do the
computation. The parser will call date() when it recognizes the inputted stream to be a
date. See the action parts on lines 023, 028, 033, and 038 of DATES.Y file.

The third function, yyerror(), prints an error message on the standard error device,
which, under MSDOS, will be the working window. yyerror() is the standard PCYACC
error routine. yyparse() will call yyerror() whenever it detects a syntax error. In our
example, yyerror() is oversimplified. In some cases a more sophisticated error handling
routine is necessary to produce comprehensive diagnostic messages and error recoveries.

6. Write the Auxiliary C Code

The auxiliary function days() will actually perform the computation.

001: /*
002: * DAYS.C -- routines do the calculation
003: */
004: #include <stdio.h> /* for printf() */
005:
006: extern int yylineno; /* defined in lex.l */
007: /* initiated by main(), in */
008: /* dates.y, program section */
009:
010: extern int yyparse(void);

Page 36

Copyright (c) 1986-2000 Abraxas Software, Inc.

011: /* generated by PCYACC */
012 /* according to dates.y */
013:
014: int regular_year[]
015: { 0, 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31, };
016:
017: int leap_year[]
018: { 0, 31, 29, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31, };
019:
020: /*
021: * days(): calculating routine
022: */
023: days(int month, int day, int year)
024: {
025: int *yearis;
026:
027: /*
028: * check the year
029: */
030: yearis = check_year(year) ?

leap_year : regular_year;
031:
032: /*
033: * check the month
034: */
035: if (month < 1 || month > 12)
036: {
037: printf("month should be in the range of

1-12\n");
038: return 0;
039: }
040:
041: /*
042: * check the day
043: */
044: if (day < 1 || day > yearis[month])
045: {
046: printf("day of the month should be in the

range of 1-%d\n", yearis[month]);
047: return 0;
048: }
049:
050: /*
051: * calculate the number of days from
052: * January 1, 0000
053: */
054: for (month; month > 1; month--)
055: day += yearis[month];
056:
057: if (year > 0)

Page 37

PCLEX Users' Manual - Printed December 11, 2000

058: {
059: day += year * 365;
060: day += year/4 - year/100 + year/400;
061: }
062:
063: printf("The date is %d days form

Jan. 1, 0000\n\n", day-1);
064:
065: printf("Input another date or CTRL-C to exit

the program\n\n");
066:
067: return 1;
068: }
069:
070: /*
071: * check_year(): leap year checking routine
072: */
073: check_year(int year)
074: {
075: if (year % 4 != 0)
076: return 0;
077: if (year % 100 != 0)
078: return 0;
079: if (year % 400 != 0)
080: return 0;
081: return 1;
082: }

7. Build the Program

To obtain the executable file of our example we need to do the following:

a) generating the parser C source file, DATES.C, and the header file DATES.H, which
is created by the -D switch, using PCYACC:

 C>pcyacc -D dates.y

b) generating the lexical scanner C source file, LEX.C, using PCLEX

 C>pclex lex.l

c) compiling and linking the parser C source file DATES.C, the scanner C source file
LEX.C, and the auxiliary C code file DAYS.C assuming that the Microsoft Visual C++
compiler is used

 C>cl -Fedays dates.c lex.c days.c

The C compiler switch -Fedays gives the name days.exe to the executable file.

Page 38

Copyright (c) 1986-2000 Abraxas Software, Inc.

Now we get the executable file called DAYS.EXE.

8. Build the Program with MAKE

Most of the programming environment provide the MAKE utility which provides a
convenient way for project development relating recompilation process. When you
invoke the MAKE program, by determining which files depend on others in a project,
MAKE automatically execute the commands needed to update the project when any
project file has changed. The makefile of our example is listed as follows.

001: # DOS makefile for DAYS
002:
003: LD = cl -Fedays
004: LDFLAGS =
005: CFLAGS = -c
006: YFLAGS = -D
007: SRCS = days.c dates.c lex.c
008: OBJS = days.obj dates.obj lex.obj
009:
010: days.exe: $(OBJS)
011: $(LD) $(LDFLAGS) $(OBJS)
012:
013: .c.obj:
014: cl $(CFLAGS) $*.c
015:
016: date.c: date.y
017: pcyacc $(YFLAGS) date.y
018:
019: lex.c: lex.l
020: pclex lex.l

Line 001 is a comment line. Preceding a line with a number sign ('#') makes the line to
be a comment line.

Lines 003 through 008 define couple macros which allow us to do text replacements
throughout the makefile. One can define a macro with

 macroname = string

The string can be any string, including a null string. In our makefile, line 004 defines a
macro, LDFLAGS, to be a null string.

A macro can be invoked by enclosing its name in parentheses preceded by a dollar sign (
'$'). When MAKE runs, it replaces every invoked macroname with its corresponding
string.

Page 39

PCLEX Users' Manual - Printed December 11, 2000

The Microsoft Visual C++ compiler option -c tells the compiler to compile the C source
files listed on the line, creating object files, but not to link the object files.

The PCYACC switch -D tells PCYACC to produce a C header file using the basename
of the grammar description file, dates. The generated header file DATES.H will be used
by yylex(), see line 006 in the file LEX.L in section 4.

Page 40

Copyright (c) 1986-2000 Abraxas Software, Inc.

VIII. ANSI C SYNTAX ANALYZER--A THIRD EXAMPLE

In this example we are trying to show the users how to build a language engine using
PCLEX and PCYACC. We will discuss both programming languages, the utilities and
the cooperation's in more detail.

The ANSI C lexical scanner, LEX.L, which is in the \ANSIC directory of the PCLEX
[DOS-OS/2] Toolkit Disk, is a "plug compatible" replacement for the hand coded lexical
scanner LEX.C in \ANSIC directory of the PCYACC Professional Upgrade Disk. The
rest of the code is the same.

1. Problem Statement

The problem is building an ANSI C syntax analyzer which reads input C source files,
checks the syntax of the statements, and gives a report of the checking.

2. Developing the Source Language

In this example the source language is ANSI C. We need to support all features of the
language.

The precise definition of escape sequences is different for PCLEX, the older Kernighan
and Ritchie C standard (K&R), and the ANSI C standard. The PCLEX escape
sequence definition is:

\\(.|0[0-7]{1,3})

Most of the older (K&R) C compilers use:

\\(.|\n|0[0-7]{0,3})

This definition allows escaped ends of lines. They are used for strings that span line
boundaries. PCLEX does not allow this.

The ANSI C escape sequence definition is a backslash followed by either

1) one of the letters "abfnrtv",
 a single quote
 a double quote
 a question mark, or
 another backslash, or

2) one to three octal digits, or

 3) a lower case "x" followed by one or more hexadecimal digits.

The above definition can be described by a regular expression:

Page 41

PCLEX Users' Manual - Printed December 11, 2000

 \\([abfnrtv"'?\\]|[0-7]{1,3}|x[0-9a-fA-F]+)

PCLEX does not allow "\0". The string "\x007" is two bytes long for ANSI C
(equivalent to "\a", the BELL character and a terminating NUL) and five bytes long for
PCLEX and K&R C (equivalent to "x007").

3. Separate the Lexical and Syntactic Parts

The implementation of the ANSI C syntax analyzer divides into four files: LEX.L,
ANSIC.Y, MAIN.C and ERR_SKEL.C. The lexical scanner generated by PCLEX
from LEX.L will handle keywords, identifiers, full numbers, one- and two-symbol
operators, letters, whitespace, and punctuation. The syntactic parser generated by
PCYACC from ANSIC.Y will handle statement and correctness recognition. Auxiliary
C function main() in MAIN.C file will handle Input/Output task. Auxiliary error
handling routines in ERR_SKEL.C file provide a general way for a language engine to
handle syntax errors in the input source file.

Two levels of error handling are involved in a language engine: the external level is the
error reporting for the input source file for the language engine; and the internal level
involves what action need to be performed when syntax errors are occurred and how far
the parsing should go. The external level will be discussed in detail in this example. The
internal error handling routines are in the ERR_SKEL.C file provided in the diskette.
ERR_SKEL.C is quite general to any language engine. However the discussion of
ERR_SKEL.C file requires a deep understanding of PCYACC. Readers please see the
PCYACC user's manual for more information regarding to the file.

4. Write the PCLEX Scanner Description

The scanner description file LEX.L is listed as following :

001: %{
002:
003: /*
004: ===
005:
006: lex.l: lexical analyzer for ANSI C parser
007: Version 2.0
008: By Yan Luo
009:
010: PCYACC(R) is a software product of
011: ABRAXAS SOFTWARE INC.
012: Copyright(C) 1986-1997 by ABRAXAS SOFTWARE INC.
013:
014: ===
015: */
016:
017: #include <stdio.h>
018: /* FILE, fprintf(), fputc(),sprintf(), stderr */
019:
020: #include <string.h> /* strcmp(), strlen() */

Page 42

Copyright (c) 1986-2000 Abraxas Software, Inc.

021: #include <ctype.h> /* isascii(), isprint() */
022: #include "ansic.h" /* token values */
023:
024: #define DIM(a) (sizeof(a)/sizeof((a)[0]))
025:
026: extern char *yytext;/* pclex's predefined pointer */
027: /* to the current token's text */
028:
029: extern FILE *yyin; /* pointer to the input file, */
030: /* defined in main.c */
031:
032: extern int error_count; /* error counter, */
033: /* defined in err_skel.c */
034:
035: int yylineno = -1; /* current line number */
036:
037: %}
038:
039: letter [a-zA-Z_]
040: digit [0-9]
041: esc \\([abfnrtv"'?\\]|[0-7]{1,3}|x[0-9a-fA-F]+)
042: alphanum [a-zA-Z_0-9]
043: blank [\t]
044: other .
045:
046: %x COMMENT
047:

The definition section spans from line 001 to line 047. Lines 017 to 022 #includes the
needed header files. Utilities defined in these headers can be used in the action parts of
the rule section and the user subroutine section.

Line 024 declares a macro, "DIM", used for calculating the number of items in a table.

Line 029 declares a FILE pointer to the input source file of the language engine. In the
last example, DATES, the program can only take inputs from the standard input device.
The pointer allows the language engine to parse C source files.

Line 032 declares the syntax error counter of the language engine counting the syntax
errors in the input C source file of the language engine.

Line 035 declares a counter counting the input source file line number for error reporting
routines. Before the parsing process it is assigned to be -1.

Lines 039 through 044 define several regular expression macros. Macro names are
substitutions of the corresponding patterns. The patterns can be referred in the rule
section with the macro names in braces, for example, "{letter}".

Line 039 defines "letter" to be any letter in English. Line 040 defines "digit" to be any
decimal digit.

Page 43

PCLEX Users' Manual - Printed December 11, 2000

Line 041 defines "esc" to be a backslash followed by either

1) one of the letters "abfnrtv",
 a single quote
 a double quote
 a question mark, or
 another backslash, or

2) one to three octal digits, or

 3) a lower case "x" followed by one or more hexadecimal digits.

Line 042 defines "alphanum" to be any letter, the underscore character ('_'), or any
digit.

Line 043 defines "blank" to be a space or a tab.

The regular expression operator "." on line 044, the definition of "other", matches any
character except the end of a line.

Line 046 declares an exclusive start condition, "COMMENT". A detailed explanation
of exclusive start condition is in Chapter X, section 5.3.

The "%%" delimiter standing along on line 048 separates the definition section from the
rule section.

The rule section spans from line 049 to 096:

048: %%
049:
050: ^{blank}*"#".*$;
051: /* ignore preprocessor directives */
052:
053: "||" return OROR;
054: "&&" return ANDAND;
055: "==" return EQU;
056: "!=" return NEQ;
057: "<=" return LEQ;
058: ">=" return GEQ;
059: "<<" return SHL;
060: ">>" return SHR;
061: "++" return ADDADD;
062: "--" return SUBSUB;
063: "->" return PTR;
064: "+=" return ADDEQ;
065: "-=" return SUBEQ;
066: "*=" return MULEQ;
067: "/=" return DIVEQ;
068: "%=" return MODEQ;
069: "<<=" return SHLEQ;
070: ">>=" return SHREQ;

Page 44

Copyright (c) 1986-2000 Abraxas Software, Inc.

071: "&&=" return ANDEQ;
072: "^=" return XOREQ;
073: "|=" return IOREQ;
074:
075: {letter}{alphanum}* return binary_search();
076:
077: {digit}+[uUlL]* return INTEGER_CONSTANT;
078:
079: {digit}+\.{digit}*((e|E)("+"|"-"){digit}+)?

return FLOAT_CONSTANT;

080: \.{digit}+((e|E)("+"|"-"){digit}+)?
return FLOAT_CONSTANT;

081:
082: L?\'([^'\\\n]|{esc})*\' return CHARACTER_CONSTANT;
083: L?\"([^"\\\n]|{esc})*\" return STRING;
084:
085: {blank}+ ;
086: \n ++yylineno;
087: "/*" BEGIN(COMMENT);
088: <COMMENT>"*/" BEGIN(0);
089: <COMMENT>[^*\n]+ ;
090: /* breaks comments into lines */
091: /* so they won't overflow buffer */
092:
093: <COMMENT>\n ++yylineno;
094: <COMMENT>"*" ;
095: {other} return yytext[0];
096:

The first pattern in the rule section, line 050, matches preprocessor directives. They
are discarded by the scanner using an empty action. Regular expression macro "blank"
was defined to be a space or a tab in the definition section of the file (line 043).
Whenever a regular expression macro name appears within braces in the rule section,
PCLEX substitutes it (and the braces) with its definition.

The next block of patterns, line 053 through line 073, match the C multi-character
operators. The returned token macros are defined in the ANSIC.H file which is
generated by PCYACC according to the ANSIC.Y file.

The pattern on the line 075, "{letter}{alphanum}*" matches both identifiers and
keywords in C. The function binary_search() defined in the user subroutine section
determines which.

The next three rules on lines 077 through 080 handles numeric constants in C. Integers
are simple. Floating point numbers are fairly simple. The need to quote or escape all the
non-text characters obscures the underlying simplicity. Basically, a floating point number
is any number with a decimal point in it and a possible exponent after it. Two rules are
needed to make sure that a decimal point all by itself is not a number.

Page 45

PCLEX Users' Manual - Printed December 11, 2000

The patterns for character literals and quoted strings on line 082 and line 083 follow.
The ANSI C standard makes a nod toward the multi-national nature of computer use with
locale specific characters. Preceding a character literal or string with a capital "L" allows
locale specific characters. Chinese, Japanese, Korean, and some other countries use
ideographic characters. Currently, double byte character set (DBCS) system or the
Unicode Standard is used to create coded character sets for such languages. Two bytes
(16-bit) are used to represent each character in both systems. The hexadecimal escape
sequences have no limit on the number of digits and can be more than a byte long. In our
example, the semantics of multi-byte characters is not handled, but the syntax is checked.

The obvious pattern for a quoted string is:

\".*\"

This is short, elegant, clear, and unfortunately, doesn't work. If there is more than one
string on a line, this pattern matches both of the strings and everything in between
(remember, the longest match is used). The correct pattern is:

\"([^"\\\n]|{esc})*\"

This pattern excludes quotes and line boundaries from strings and handles escape
sequences properly. The escape sequence macro is overkill. A simpler regular
expression would allow all valid strings without trying to bring out the semantics. A
simpler pattern that is adequate is:

\"([^"\\\n]|\\\")*\"

Lines 084 and 085 handle white spaces. The scanner discards blanks and tabs. Ends of
lines are added to the line number, "yylineno" and otherwise ignored. Comments are also
discarded. Ends of lines within comments are counted. Any otherwise unmatched
character is passed directly to the parser.

A detailed explanation of the comment rules, lines 088 to 094, is in the section on
exclusive start conditions (Chapter X, section 5.3).

Line 095 handles the situation other than those discussed above.

The LEX.L scanner illustrates the techniques of recognizing the kinds of tokens you will
encounter in most programming languages: quoted literals, numeric literals, comments,
single and multi-character operators, identifiers, and keywords.

The "%%" delimiter standing along on line 097 separates the rule section from the user
subroutine section.

The user subroutine section spans from line 098 to 362. The first function in this
section, binary_search(), determines whether a name is an identifier in the C source file
or a reserved keyword in the C language. Other functions in this section are error
reporting routines for the language engine.

097: %%
098:

Page 46

Copyright (c) 1986-2000 Abraxas Software, Inc.

099: /*
100: * reserved word table
101: */
102: static const struct
103: {
104: char *name;
105: int yylex;
106: } keywords[] =
107: {
108: {"auto", Auto},
109: {"break", Break},
110: {"case", Case},
111: {"char", Char},
112: {"const", Const},
113: {"continue", Continue},
114: {"default", Default},
115: {"do", Do},
116: {"double", Double},
117: {"else", Else},
118: {"enum", Enum},
119: {"extern", Extern},
120: {"float", Float},
121: {"for", For},
122: {"goto", Goto},
123: {"if", If},
124: {"int", Int},
125: {"long", Long},
126: {"register", Register},
127: {"return", Return},
128: {"short", Short},
129: {"signed", Signed},
130: {"sizeof", Sizeof},
131: {"static", Static},
132: {"struct", Struct},
133: {"switch", Switch},
134: {"typedef", Typedef},
135: {"union", Union},
136: {"unsigned", Unsigned},
137: {"void", Void},
138: {"volatile", Volatile},
139: {"while", While}
140: };
141:
142: /*
143: * binary_search():
144: * reserved word table look up routine
145: */
146: int binary_search(void)
147: {
148: register int mid;
149: int cc, hi, lo;
150:

Page 47

PCLEX Users' Manual - Printed December 11, 2000

151: lo = 0;
152: hi = DIM(keywords) - 1;
153:
154: while (lo <= hi)
155: {
156: mid = (lo + hi) / 2;
157:
158: if((cc=strcmp(yytext,keywords[mid].name))==0)
159: return keywords[mid].yylex;
160: if (cc < 0)
161: hi = mid - 1;
162: else
163: lo = mid + 1;
164: }
165: return IDENTIFIER;
166: }
167:

The reserved words in the array "keywords[]" must be in alphabetical order for the binary
search in "binary_search()" to work. Each keyword is paired with its token value that is
passed to the parser. Token values are defined in the PCYACC generated header file
ANSIC.H according to the grammar description file ANSIC.Y. Any name that is not a
keyword is an "IDENTIFIER".

The following error reporting routines are independent of the C lexical scanner defined
above. They are for the parser part of the language engine and could be put into another
file or the program part of the grammar description file. The reason for putting them
hear is for better discussion. Furthermore, usually a grammar description file is
considerably bigger than the scanner description file and requires more computer memory
for compilation.

168: /*
169: * error reporting code for C language engine
170: */
171:
172: #define WIDTH 80 /* width of stderr device */
173: #define YYERRCODE 256 /* characters in ASCII */
174:
175: FILE *yyerrfile = stderr;
176: /* file to write error report to */
177:
178: char yyerrsrc[64] = ""; /* current input file name */
179:
180: /*
181: * yyerror(): improved error reporting routine
182: */
183: void yyerror(char *s, char *t)
184: {
185: static const char expecting[] = "expecting: ";

Page 48

Copyright (c) 1986-2000 Abraxas Software, Inc.

186: static int list = 0;
187: static int column = 0;
188:
189: if (s != NULL)
190: {
191: if (column != 0)
192: fputc('\n', yyerrfile);
193:
194: errprefix(s);
195:
196: if (t == NULL)
197: column = 0;
198: else
199: column = fprintf(yyerrfile,"actual:%s",t);
200:
201: list = 0;
202: }
203: else if (t != NULL)
204: {
205: if (list == 0)
206: {
207: if(column+strlen(t)+sizeof(expecting)+1

< WIDTH - 2)
208: column += fprintf(yyerrfile,

" %s%s", expecting, t);
209: else
210: column = fprintf(yyerrfile, "\n%s%s",

expecting, t) - 1;
211: }
212: else
213: {
214: if(column + strlen(t) < WIDTH - 2)
215: column += fprintf(yyerrfile,

", %s", t);
216: else
217: column = fprintf(yyerrfile,

",\n %s", t) - 1;
218: }
219: ++list;
220: }
221: else
222: {
223: fprintf(yyerrfile, "\n");
224: column = list = 0;
225: }
226: }
227:
228: /*
229: * errprefix():
230: * print where the error occured on yyerrfile
231: */
232: static void errprefix(char *msg)

Page 49

PCLEX Users' Manual - Printed December 11, 2000

233: {
234: int punct = 0;
235:
236: fprintf(yyerrfile, "[error %d] ", error_count+1);
237:
238: if(yyerrsrc[0] != '\0')/* any input file name? */
239: {
240: fprintf(yyerrfile, "file '%s'", yyerrsrc);
241: punct = 1;
242: }
243: if (yylineno >= 0) /* valid line number? */
244: {
245: if (punct)
246: fprintf(yyerrfile, ", ");
247: fprintf(yyerrfile, "line %d", yylineno);
248: punct = 1;
249: }
250: if(yytext != NULL && *yytext != '\0')
251: /* real token? */
252: {
253: if (punct)
254: fprintf(yyerrfile, " ");
255: fprintf(yyerrfile, "near \"%s\"", yytext);
256: punct = 1;
257: }
258: if (punct)
259: fprintf(yyerrfile, ": ");
260: fprintf(yyerrfile, "%s\n", msg);
261: }
262:

The error reporting routine, yyerror(), is the standard PCYACC error routine. yyparse()
will call yyerror() whenever it detects a syntax error. The lexical scanner could also use
the same routine to report any lexical error occurred in the input source file.

yyerror() in the ANSIC project is quite different from the one in the DATES project.
Two parameters are passed to this version of yyerror(). Character pointer *s will point to
the type of the error. For example, "Syntax Error" or "Illegal Character". The second
character pointer, *t, will point to the actual error token or the token expected. FILE
pointer *yyerrfile is used to guide the language engine reporting error message to a
specific file. In our example stderr is used.

An auxiliary function, errprefix(), is called by yyerror() to report the location of the
error occurred and the current error number. Character array yyerrsrc[] holds the current
input C source file name. Function main() performs the assignment when the language
engine is invoked.

Software developers can write their own version of yyerror() according to their needs.

The following function, yydisplay(), takes a token value as the passed parameter, "ch" ,
and returns a pointer to the print out form of the token. In our example the function is
passed to function yyerror() as the second parameter.

Page 50

Copyright (c) 1986-2000 Abraxas Software, Inc.

263: /*
264: * yydisplay():
265: * returns pointer to the printable form
266: * for token value of "ch"
267: */
268: char * yydisplay(int ch)
269: {
270: static char *tok[] =
271: {
272: "DDD",
273: "CHARACTER_CONSTANT",
274: "FLOAT_CONSTANT",
275: "INTEGER_CONSTANT",
276: "STRING",
277: "IDENTIFIER",
278: "TYPENAME",
279: "ENUMERATION_CONSTANT",
280: "Auto",
281: "Break",
282: "Case",
283: "Char",
284: "Const",
285: "Continue",
286: "Default",
287: "Do",
288: "Double",
289: "Else",
290: "Enum",
291: "Extern",
292: "Float",
293: "For",
294: "Goto",
295: "If",
296: "Int",
297: "Long",
298: "Register",
299: "Return",
300: "Short",
301: "Signed",
302: "Sizeof",
303: "Static",
304: "Struct",
305: "Switch",
306: "Typedef",
307: "Union",
308: "Unsigned",
309: "Void",
310: "Volatile",
311: "While",
312: "OROR",
313: "ANDAND",

Page 51

PCLEX Users' Manual - Printed December 11, 2000

314: "EQU",
315: "NEQ",
316: "LEQ",
317: "GEQ",
318: "SHL",
319: "SHR",
320: "ADDADD",
321: "SUBSUB",
322: "PTR",
323: "ADDEQ",
324: "SUBEQ",
325: "MULEQ",
326: "DIVEQ",
327: "MODEQ",
328: "SHLEQ",
329: "SHREQ",
330: "ANDEQ",
331: "XOREQ",
332: "IOREQ",
333: 0
334: };
335:
336: static char buf[16];
337:
338: switch (ch)
339: {
340: case 0: return ("[end of file]");
341: case YYERRCODE: return ("[error]");
342: case '\a': return ("'\\a'");
343: case '\b': return ("'\\b'");
344: case '\f': return ("'\\f'");
345: case '\n': return ("'\\n'");
346: case '\r': return ("'\\r'");
347: case '\t': return ("'\\t'");
348: case '\v': return ("'\\v'");
349: }
350:
351: if (ch > YYERRCODE && ch < YYERRCODE + DIM(tok))
352: return(tok[ch-(YYERRCODE + 1)]);
353: /* is %token */
354:
355: if (isascii(ch) && isprint(ch))
356: sprintf(buf, "'%c'", ch); /* printable */
357: else
358: sprintf(buf,"char %d",ch);/* unprintable */
359:
360: return(buf);
361: }
362:

Page 52

Copyright (c) 1986-2000 Abraxas Software, Inc.

The tokens in the token table, "tok", should be in the order according to their
corresponding token values. Token values are defined in the PCYACC generated header
file, ANSIC.H, according to the grammar description file, ANSIC.Y.

5. Write the PCYACC Parser Description

The PCYACC parser description file ANSIC.Y is listed as following:

001: /*
002: ==
003:
004: ANSIC.Y : PCYACC grammar description file for ANSI C
005: version 2.0
006:
007: by Yan Luo
008:
009:
010: PCYACC (R) is a software product of

ABRAXAS SOFTWARE INC.
011: Copyright (C) 1986-1997 by ABRAXAS SOFTWARE INC.
012:
013: Reference: The C Programming Language
014: Second Edition
015: By B.W. Kernighan and D.M. Ritchie
016: ===
017: */
018: %{
019: #include <stdio.h>
020:
021: extern void yyerror(char *, char *);
022: extern char *yydisplay(int);
023: extern int yylex(void);
024: %}
025:
026: %union {
027: int i;
028: float r;
029: char *s;
030: }
031:
032: /*
033: =================
034: special symbols
035: =================
036: */
037: %token DDD /* three dots ... */
038:
039: /*
040: =================

Page 53

PCLEX Users' Manual - Printed December 11, 2000

041: constants
042: =================
043: */
044: %token CHARACTER_CONSTANT
045: %token FLOAT_CONSTANT
046: %token INTEGER_CONSTANT
047: %token STRING
048:
049: /*
050: ==================
051: identifiers
052: ==================
053: */
054: %token IDENTIFIER
055: %token TYPENAME
056: %token ENUMERATION_CONSTANT
057:
058: /*
059: ==================
060: key words
061: ==================
062: */
063: %token Auto Break Case Char
064: %token Const Continue Default Do
065: %token Double Else Enum Extern
066: %token Float For Goto If
067: %token Int Long Register Return
068: %token Short Signed Sizeof Static
069: %token Struct Switch Typedef Void
070: %token Volatile Union Unsigned While
071:
072: /*
073: ==================
074: combined operators
075: ==================
076: */
077: /*
078: * binary logicals and comparators
079: */
080: %token OROR /* || */
081: %token ANDAND /* && */
082: %token EQU /* == */
083: %token NEQ /* != */
084: %token LEQ /* <= */
085: %token GEQ /* >= */
086:
087: /*
088: * shift operators
089: */
090: %token SHL /* << */
091: %token SHR /* >> */
092:

Page 54

Copyright (c) 1986-2000 Abraxas Software, Inc.

093: /*
094: * unary increments
095: */
096: %token ADDADD /* ++ */
097: %token SUBSUB /* -- */
098:
099: /*
100: * pointer
101: */
102: %token PTR /* -> */
103:
104: /*
105: * assignments
106: */
107: %token ADDEQ /* += */
108: %token SUBEQ /* -= */
109: %token MULEQ /* *= */
110: %token DIVEQ /* /= */
111: %token MODEQ /* %= */
112: %token SHLEQ /* <<= */
113: %token SHREQ /* >>= */
114: %token ANDEQ /* &= */
115: %token XOREQ /* ^= */
116: %token IOREQ /* |= */
117:
118: /*
119: ====================
120: operator precedence
121: ====================
122: */
123: %nonassoc Shift
124: %nonassoc error
125: %nonassoc IDENTIFIER
126: %nonassoc Else
127:
128: /*
129: * comma operator
130: */
131: %left ','
132:
133: /*
134: * assignment operators
135: */
136: %right ADDEQ SUBEQ MULEQ DIVEQ
137: MODEQ SHLEQ SHREQ
138:
139: /*
140: * binary operators
141: */
142: %right '?' ':'
143: %left OROR
144: %left ANDAND

Page 55

PCLEX Users' Manual - Printed December 11, 2000

145: %left EQU
146: %left NEQ
147: %left LEQ GEQ
148: %left SHL SHR
149:
150: /*
151: * unary operators
152: */
153: %right ADDADD
154: SUBSUB
155: '~'
156: '!'
157: Sizeof
158: '*'
159:
160: /*
161: * special operators
162: */
163: %left '(' '[' '.' PTR
164:
165: /*
166: =================
167: start symbol
168: =================
169: */
170: %start translation_unit
171:
172: %%
173:
174: translation_unit
175: : external_declaration
176: | translation_unit external_declaration
177: | error /* last ditch error recovery */
178: ;
179:
180: external_declaration
181: : function_definition
182: | declaration
183: ;
184:
185: function_definition
186: : declaration_specifiers declarator

declaration_list compound_statement
187:
188: | declaration_specifiers declarator

compound_statement
189:
190: | declarator

declaration_list compound_statement
191:
192: | declarator

compound_statement

Page 56

Copyright (c) 1986-2000 Abraxas Software, Inc.

193:
194: /*
195: * insert wrong or missing parts of function headers
196: */
197: | declaration_specifiers error

compound_statement
198:
199: | declarator

error compound_statement
200: ;
201:
202: declaration
203: : declaration_specifiers init_declarator_list ';'
204: | declaration_specifiers ';'
205: | identifier identifier_list ';'
206: | identifier identifier '[' identifier ']' ';'
207: | identifier '*' identifier ';'
208:
209: /*
210: * fixed incorrect initializers list
211: */
212: | declaration_specifiers error ';' { yyerrok; }
213: ;
214:
215: declaration_list
216: : declaration
217: | declaration_list declaration
218: ;
219:
220: declaration_specifiers
221: : storage_class_specifier
222: | storage_class_specifier declaration_specifier
223: | type_specifier
224: | type_specifier declaration_specifier
225: | type_qualifier
226: | type_qualifier declaration_specifier
227: ;
228:
229: storage_class_specifier
230: : Auto
231: | Extern
232: | Register
233: | Static
234: | Typedef
235: ;
236:
237: type_specifier
238: : Char
239: | Double
240: | Float
241: | Int
242: | Long

Page 57

PCLEX Users' Manual - Printed December 11, 2000

243: | Short
244: | Signed
245: | Unsigned
246: | Void
247: | typedef_name
248: | enum_specifier
249: | struct_or_union_specifier
250: ;
251:
252: type_qualifier
253: : Const
254: | Volatile
255: ;
256:
257: struct_or_union_specifier
258: : struct_or_union identifier

'{' struct_declaration_list '}'
259: | struct_or_union '{' struct_declaration_list '}'
260: | struct_or_union identifier
261: ;
262:
263: struct_or_union
264: : Struct
265: | Union
266: ;
267:
268: struct_declaration_list
269: : struct_declaration
270: | struct_declaration_list struct_declaration
271: ;
272:
273: init_declarator_list
274: : init_declarator
275: | init_declarator_list ',' init_declarator
276: ;
277:
278: init_declarator
279: : declarator
280: | declarator '=' initializer
281: ;
282:
283: struct_declaration
284: : declaration_specifiers struct_declarator_list ';'
285:
286: /*
287: * fixed incorrect structures
288: */
289: | error ';' { yyerrok; }
290: ;
291:
292: struct_declarator_list
293: : struct_declarator

Page 58

Copyright (c) 1986-2000 Abraxas Software, Inc.

294: | struct_declarator_list ',' struct_declarator
295: ;
296:
297: struct_declarator
298: : declarator
299: | declarator ':' constant_expression
300: | ':' constant_expression
301: ;
302:
303: enum_specifier
304: : Enum identifier '{' enumerator_list '}'
305: | Enum '{' enumerator_list '}'
306: | Enum identifier
307: ;
308:
309: enumerator_list
310: : enumerator
311: | enumerator_list ',' enumerator
312: ;
313:
314: enumerator
315: : identifier
316: | identifier '=' constant_expression
317: /*
318: * fixed incorrect enumeration tags
319: */
320: | error
321: ;
322:
323: declarator
324: : pointer direct_declarator
325: | direct_declarator
326: ;
327:
328: direct_declarator
329: : identifier %prec Shift
330: | '(' declarator ')'
331: | direct_declarator '[' constant_expression ']'
332: | direct_declarator '[' ']'
333: | direct_declarator '(' parameter_type_list ')'
334: | direct_declarator '(' identifier_list ')'
335: | direct_declarator '(' ')'
336: ;
337:
338: pointer
339: : '*' type_qualifier_list
340: | '*'
341: | '*' type_qualifier_list pointer
342: | '*' pointer
343: ;
344:
345: type_qualifier_list

Page 59

PCLEX Users' Manual - Printed December 11, 2000

346: : type_qualifier
347: | type_qualifier_list type_qualifier
348: ;
349:
350: parameter_type_list
351: : parameter_list
352: | parameter_list ',' DDD
353: ;
354:
355: parameter_list
356: : parameter_declaration
357: | parameter_list ',' parameter_declaration
358: ;
359:
360: parameter_declaration
361: : declaration_specifiers declarator
362: | declaration_specifiers abstract_declarator
363: | declaration_specifiers
364:
365: /*
366: * fixed missing parameter
367: */
368: | declaration_specifiers error
369: ;
370:
371: identifier_list
372: : identifier
373: | identifier_list ',' identifier
374: | error /* insert missing identifier */
375: ;
376:
377: initializer
378: : assignment_expression
379: | '{' initializer_list '}'
380: | '{' initializer_list ',' '}'
381: ;
382:
383: initializer_list
384: : initializer
385: | initializer_list ',' initializer
386: | error /* fixed missing constant */
387: ;
388:
389: type_name
390: : declaration_specifiers abstract_declarator
391: | declaration_specifiers
392: ;
393:
394: abstract_declarator
395: : pointer
396: | pointer direct_abstract_declarator
397: | direct_abstract_declarator

Page 60

Copyright (c) 1986-2000 Abraxas Software, Inc.

398: ;
399:
400: direct_abstract_declarator
401: : '(' abstract_declarator ')'
402: | '[' constant_expression ']'
403: | '[' ']'
404: | '(' parameter_type_list ')'
405: | '(' ')'

406: | direct_abstract_declarator
'[' constant_expression ']'

407: | direct_abstract_declarator
'[' ']'

408: | direct_abstract_declarator
'(' parameter_type_list ')'

409: | direct_abstract_declarator
'(' ')'

410: ;
411:
412: typedef_name
413: : TYPENAME
414: ;
415:
416: statement
417: : labeled_statement
418: | expression_statement
419: | compound_statement
420: | selection_statement
421: | iteration_statement
422: | jump_statement
423:
424: /*
425: * last ditch statement recovery
426: */
427: | error ';' { yyerrok; }
428: ;
428:
429: labeled_statement
430: : identifier ':' statement
431: | Case constant_expression ':' statement
432: | Default ':' statement
433: ;
434:
435: expression_statement
436: : expression ';'
437: | ';'
438: ;
439:
441: compound_statement

Page 61

PCLEX Users' Manual - Printed December 11, 2000

441: : '{' declaration_list statement_list '}'
442: | '{' declaration_list '}'
443: | '{' statement_list '}'
444: | '{' '}'
445: ;
446:
447: statement_list
448: : statement
449: | statement_list statement
450: ;
451:
452: selection_statement
453: : If '(' expression ')' statement %prec Shift
454: | If '(' expression ')' statement Else statement
455: | Switch '(' expression ')' statement
456: ;
457:
458: iteration_statement
459: : While '(' expression ')' statement
460: | Do statement While '(' expression ')' ';'

461: | For '(' expression ';' expression ';'
expression ')' statement

462: | For '(' expression ';' expression ';'
')' statement

463: | For '(' expression ';' ';'
expression ')' statement

464: | For '(' expression ';' ';'
')' statement

465: | For '(' ';' expression ';'
expression ')' statement

466: | For '(' ';' expression ';'
')' statement

467: | For '(' ';' ';'
expression ')' statement

468: | For '(' ';' ';'
')' statement

469:
470: /*
471: * fixed error in "for expression list"
472: */
473: | For '(' error ')' statement
474: ;
475:
476: jump_statement

Page 62

Copyright (c) 1986-2000 Abraxas Software, Inc.

477: : Goto IDENTIFIER ';'
478: | Continue ';'
479: | Break ';'
480: | Return expression ';'
481: | Return ';'
482: ;
483:
484: expression
485: : assignment_expression
486: | expression ',' assignment_expression
487:
488: /*
489: * lowest precedence infix op
490: */
491: | expression error assignment_expression
492: ;
493:
494: assignment_expression
495: : conditional_expression
496: | unary_expression assignment_operator
497: assignment_expression
498: ;
499:
500: assignment_operator
501: : '='
502: | MULEQ
503: | DIVEQ
504: | MODEQ
505: | ADDEQ
506: | SUBEQ
507: | SHLEQ
508: | SHREQ
509: | ANDEQ
510: | IOREQ
511: | XOREQ
512: ;
513:
514: conditional_expression
515: : logical_or_expression
516: | logical_or_expression '?' expression

':' conditional_expression
517: ;
518:
519: constant_expression
520: : conditional_expression
521: ;
522:
523: logical_or_expression
524: : logical_and_expression
525: | logical_or_expression OROR logical_and_expression
526: ;
527:

Page 63

PCLEX Users' Manual - Printed December 11, 2000

528: logical_and_expression
529: : inclusive_or_expression
530: | logical_and_expression ANDAND

inclusive_or_expression
531: ;
532:
533: inclusive_or_expression
534: : exclusive_or_expression
535: | inclusive_or_expression '|'

exclusive_or_expression
536: ;
537:
538: exclusive_or_expression
539: : and_expression
540: | exclusive_or_expression '^' and_expression
541: ;
542:
543: and_expression
544: : equality_expression
545: | and_expression '&' equality_expression
546: ;
547:
548: equality_expression
549: : relational_expression
550: | equality_expression EQU relational_expression
551: | equality_expression NEQ relational_expression
552: ;
553:
554: relational_expression
555: : shift_expression
556: | relational_expression '<' shift_expression
557: | relational_expression '>' shift_expression
558: | relational_expression LEQ shift_expression
559: | relational_expression GEQ shift_expression
560: ;
561:
562: shift_expression
563: : additive_expression
564: | shift_expression SHL additive_expression
565: | shift_expression SHR additive_expression
566: ;
567:
568: additive_expression
569: : multiplicative_expression
570: | additive_expression '+' multiplicative_expression
571: | additive_expression '-' multiplicative_expression
572: ;
573:
574: multiplicative_expression
575: : cast_expression
576: | multiplicative_expression '*' cast_expression
577: | multiplicative_expression '/' cast_expression

Page 64

Copyright (c) 1986-2000 Abraxas Software, Inc.

578: | multiplicative_expression '%' cast_expression
579: ;
580:
581: cast_expression
582: : unary_expression
583: | '(' type_name ')' cast_expression
584: ;
585:
586: unary_expression
587: : postfix_ expression
588: | ADDADD unary_expression
589: | SUBSUB unary_expression
590: | unary_operator cast_expression
591: | Sizeof unary_expression
592: | Sizeof '(' type_name ')'
593: ;
594:
595: unary_operator
596: : '&'
597: | '*'
598: | '+'
599: | '-'
600: | '~'
601: | '!'
602: ;
603:
604: postfix_expression
605: : primary_expression
606: | postfix_expression

'[' expression ']'

607: | postfix_expression
'(' argument_expression_list ')'

608: | postfix_expression
'(' ')'

609: | postfix_expression '.' IDENTIFIER
610: | postfix_expression PTR IDENTIFIER
611: | postfix_expression ADDADD
612: | postfix_expression SUBSUB
613: ;
614:
615: primary_expression
616: : identifier
617: | constant
618: | string
619: | '(' expression ')'
620: ;
621:
622: argument_expression_list
623: : assignment_expression

Page 65

PCLEX Users' Manual - Printed December 11, 2000

624: | argument_expression_list ',' assignment_expression
625: ;
626:
627: constant
628: : INTEGER_CONSTANT
629: | CHARACTER_CONSTANT
630: | FLOAT_CONSTANT
631: | ENUMERATION_CONSTANT
632: ;
633:
634: identifier
635: : IDENTIFIER
636: ;
637:
638: string
639: : STRING
640: ;

6. Write the Auxiliary C Code

The auxiliary C file MAIN.C is listed as following:

001: /*
002: ===
003: MAIN.C: main routine for ANSIC parser
004: Version 2.0
005: by Yan Luo
006:
007: PCYACC (R) is a software product of

ABRAXAS SOFTWARE INC.
008: Copyright (C) 1986-1997 by ABRAXAS SOFTWARE INC.
009: ===
010: */
011:
012: #include <stdio.h> /* fopen(),fclose(),fprintf() */
013:
014: #include <stdlib.h> /* EXIT_FAILURE/SUCCESS, exit() */
015:
016: #include <string.h> /* strcpy() */
017:
018: extern int yylineno;

/* line # of current line, defined in lex.l */
019:
020: extern int error_count;

/* count of errors, defined in err_skel.c */
021:
022: extern char yyerrsrc[64];

/* input file name, defined in lex.l */
023:

Page 66

Copyright (c) 1986-2000 Abraxas Software, Inc.

024: extern int yyparse(void); /* defined in err_skel.c */
026: FILE *yyin; /* pointer to input file */
027:
028: main(int argc, char *argv[])
029: {
030: if (argc < 2)
031: {
032: fprintf(stderr,

"\nUsage:\n\tansic8 <program>\n\n\tor\n\n");
033:
034: fprintf(stderr, "\tansic7 <program>\n\n");
035: exit(EXIT_FAILURE); /* EXIT_FAILURE = 1 */
036: }
037:
038: yyin = fopen(argv[1], "r");
039:
040: if (yyin == NULL)
041: {
042: fprintf(stderr,

"Can't open source program file %s\n",
argv[1]);

043: exit(EXIT_FAILURE); /* EXIT_FAILURE = 1 */
044: }
045:
046: strcpy(yyerrsrc, argv[1]);
047: yylineno = 1;
048: (void) yyparse();
049: fclose(yyin);
050:
051: if (error_count != 0)
052: {
053: fprintf(stderr,

"\n<==== %d error%s found by the parser ====>\n",
error_count, (error_count == 1) ? "" : "s");

054:
055: exit(EXIT_FAILURE);
056: }
057: else
058: {
059: fprintf(stdout,
060: "\nNo syntax error was found by the parser\n");
061: }
062:
063: exit(EXIT_SUCCESS); /* EXIT_SUCCESS = 0 */
064: }

7. Build the Program

The makefile of our ANSI C syntax analyzer is listed as follows.

Page 67

PCLEX Users' Manual - Printed December 11, 2000

001: #
002: # UNIX style makefile for ANSI C syntax analyzer
003: #
004: CC=cl
005: CFLAGS=-c -qc
006: OBJS=ansic.obj main.obj lex.obj
007:
008: ansic.exe : $(OBJS)
009: $(CC) $(OBJS)
010:
011: .c.obj :
012: $(CC) $(CFLAGS) $*.c
013:
014: lex.c : lex.l
015: pclex lex.l
016:
017: ansic.c : ansic.y
018: pcyacc -r -n -D ansic.y
019:
020: ansic.obj : ansic.c
021:
022: main.obj : global.h main.c

Page 68

Copyright (c) 1986-2000 Abraxas Software, Inc.

IX. PRINCIPLES BEHIND PCLEX

1. Introduction to Formal Languages

Noam Chomsky, a linguist, in the mid-1950s defined a taxonomy of formal languages
that is still in use. He defined four broad classes of languages in terms of the grammars,
which are 4-tuples

 G = (V, T, P, S)

where:

G is a grammar;
V = {N, T} is an alphabet contains non terminal symbols N and terminal

symbols T;
T in V is an alphabet of terminal symbols;
P is a finite set of rewriting rules; and
S is a single non terminal , a member of N, which serves as an initial symbol to

initiate each derivation sequence.

The language of the grammar is the set of terminal string that can be generated from S.
The difference in the four types of grammars is the allowed forms of the rewriting rules in
P. A grammar G is Chomsky type 0 if the rules in P have the form

u ::= U with u in V+ and U in V*.

That is the left part u is a sequence of symbols and the right part U can be empty.
Chomsky type 0 grammars are also known as phrase structure grammars or phrase
grammars. Little work has been done on type 0 grammars.

For the type 1 grammars, the context sensitive grammars, the rewriting rules are
restricted to the form:

xUy ::= xuy with U in N; x, y in V*, and u in V+.

The context sensitive part in the name comes from the fact that U can be rewritten as u
only in the context of x...y. Context sensitive grammars have received quite a bit of
attention from the theoreticians in linguistics, mathematics, and computer science.

In the type 2 or context free grammars, the rewriting rules are further restricted to the
form:

U ::= u with U in N and u in V*.

This class of grammars are called context free because U can be rewritten as u, regardless
of the context it appears in. The context free grammars are restricted enough to be
amenable to analysis and general enough to be useful. Almost all programming
languages have context free grammars.

Page 69

PCLEX Users' Manual - Printed December 11, 2000

The rewriting rules for the Chomsky type 3 or regular grammars are even more
restrictive. The form must be:

U ::= u or U ::= wu, where u is in T and U and w are in N.

Regular grammars have a fundamental role in both formal language theory and automata
theory. The set of strings generated by a regular grammar is also the set "accepted" by a
simple program (or machine) called a finite state automata (which is more precisely
defined in Chapter IX), and vice versa. Thus we have a characterization of this set of
languages in terms of the program complexity required to parse them.

Phrase structure grammars are the most general and include the languages generated by
the other three types of grammar. Each of the classes is completely included in its
predecessor and completely includes its successor class. That is all regular languages
have a regular grammar, a context free grammar, a context sensitive grammar, and a
phrase structure grammar. There are phrase structure languages that do have a context
sensitive grammar.

2. Regular Expressions

Regular expressions are a notation for defining a regular language. The rules of the
notation comprise a pattern description language. Regular expressions can be described
by a context-free grammar:

 RegularExpression = (T, N, P, S)

where

a) T = { ?, *, +, |, (,), /, symbol }

where symbol is any symbol in the alphabet of the target language the regular expression
defines.

 b) N = { RegularExpression,PrimaryList, Primary, Element }

P is the set of grammar rules or productions. It should take the form of U := u with U
in N and u in V*. P is listed as following:

c) RegularExpression -> RegularExpression '|' PrimaryList
 RegularExpression -> RegularExpression '/' PrimaryList
 RegularExpression -> PrimaryList
 PrimaryList -> PrimaryList Primary
 PrimaryList -> Primary
 Primary -> Element '*'
 Primary -> Element '+'
 Primary -> Element '?'
 Primary -> Element
 Element -> symbol
 Element -> '(' RegularExpression ')'

And , S is the starting non terminal:

Page 70

Copyright (c) 1986-2000 Abraxas Software, Inc.

d) S = { RegularExpression }

3. Regular Languages

A regular language, or called a regular set, is a language can be defined by either a regular
grammar or a regular expression. More often in the practice we use a regular expression
to define a regular language. Thus a language is regular if there exists a regular
expression that represents the strings in the language. Some of the conclusions of further
research regarding to regular language are listed as following:

Every finite set of strings is a regular language or, every regular language is finite;

If L1 and L2 are regular languages, then L1* or L2*, L1|L2, and L1.L2 are also regular
languages;

If L is a regular language, then L{0,n} with n>=0 is also a regular language;

If L is a regular language, then L{1,1} = L{0,0}L.

4. Non deterministic Finite State Machines (NDFSM)

A finite-state machine is defined as a 5-tuple:

 M = (T, Q, P, q, F)

where:

 M is a finite-state machine;
T is an alphabet contains terminal symbols;
Q is a finite set of states;
q in Q is one specific state called the start state;
F in Q is a set of final states or halting states;
P is a finite set of transition rules defining how the automaton advances from

one state to the next according to the current state and the input symbol.

Strings in a regular language defined by a regular grammar or a regular expression can be
recognized by a finite-state machine which processes the input string one character at a
time. When the last character has been processed, if the machine is in one of a final
states, the string is accepted; otherwise, it is rejected. If two automata accept the same
language, they are said to be equivalent. If two automata are equivalent and have the
same states and transitions except for the names of the states, they are call isomorphic. If
an automaton has no equivalent automata with fewer states, it is called reduced.

A non deterministic finite-state machine (NFSM) can have more than one possible
transition for any given state and input symbol. It can arbitrarily choose any available
transition. If there exists at least one sequence of transitions form the start state to a final
state that reads the whole string, the non deterministic finite-state machine is said to
accept the input string.

Page 71

PCLEX Users' Manual - Printed December 11, 2000

A state transition without reading an input token is call an empty transition. A non
deterministic finite-state machine allows to make an empty transition.

5. Deterministic Finite State Machines (DFSM)

A deterministic finite-state machine (DFSM) has at most one possible transition for any
given state and input symbol and does not allow to make an empty transition.

6. PCLEX -- From Regular Expressions to DFSM

Many strategies can be used for building a finite state machine, or called a lexical
analyzer, from a regular expression. PCLEX uses the strategy that first construct an
NFSM from a regular expression and then convert the NFSM into a DFSM.

Thompson's construction is one of the algorithms building an NFSM from a regular
expression. The input of the construction is a regular expression r over an alphabet T.
The output of the construction is an NFSM accepting language L(r).

The methods of the algorithm is described as follows:

i) For a regular expression e which denotes the set containing the empty string, {e},
construct the NFSM

start e
--------> i ---------> f

where i is a new start state and f is a new accepting state.

ii) For a regular expression a, where a is a symbol in T, that denotes the set containing
string a, {a}, construct the NFSM

start a
--------> i ---------> f

where i is a new start state and f is a new accepting state.

Suppose N(a) and N(b) are NFSM's for regular expressions a and b.

iii) For the regular expression a|b, construct the NFSM

e e
-----> N(a) ----->

start | |
------> i -- ------> f

| e e |
-----> N(b) ----->

Page 72

Copyright (c) 1986-2000 Abraxas Software, Inc.

ix) For the regular expression ab, construct the NFSM

start
--------> i -------> N(a) N(b) -------> f

x) For the regular expression a*, construct the NFSM

e
<--------------

start e | | e
------> i ------> N(a) ------->-------> f

| |
| e |
------------------------------->

And the algorithm is as following :

a) parse r into its constituent sub expressions;

b) using rules (i) and (ii) described above to construct NFSM's for each of the basic
symbols in r;

c) combining these NFSM's inductively using rule (iii), (ix), and (x) until obtaining the
NFSM for the entire expression.

An algorithm called subset construction is then used to construct a DFSM, denoted by D,
from the NFSM, denoted by N. By definition, D should be able to accept the same
language L(r). Each DFSM state is a set of NFSM states. The subset construction
algorithm constructs a transition table, Dtran, for D so that D will simulate all possible
moves N can make on a given input string.

Let c represents a possible input symbol, s represents an NFSM state, s0 the start state of
N, S a set of NFSM states that defines a DFSM state, and Dstates the set of states of D.
Three operations are used to keep track of sets of NFSM states. They are:

e-closure(s) : the set of NFSM states reachable from s on e-transition;

e-closure(S): the set of NFSM states reachable from some s in S on e-transition;

move(S, c): the set of NFSM states to which there is a transition on input symbol c from
some s in S.

The algorithm then can be written as:

Page 73

PCLEX Users' Manual - Printed December 11, 2000

Initiate the Dtran to all failure transitions.
while (there is an unmarked S in Dstates)
{

mark S
for(each input symbol c)
{

U = e-closure(move(S,c));
if(U is not 0)
{

if (U is not in Dstates)
add U as a new unmarked state
to Dstates

Dtran[S,c] = U
}

}
}

Page 74

Copyright (c) 1986-2000 Abraxas Software, Inc.

X. WRITING PCLEX SYNTAX DESCRIPTIONS

A simple scanner program is:

%%
\t output(' ');

This program converts all tabs to blanks. The "%%" marks the beginning of the rules.
The rule contains a pattern to match tabs ("\t") and an action ("output(' ');"). Every time
the pattern is matched, the action is executed. The function "output()" writes a character
to the output (usually "stdout", the standard output) and is included in every generated
scanner.

In general, the structure of PCLEX input files is:

definitions
%%
rules
%%
user subroutines

The definition section contains pattern macro definitions (see section 4), start condition
declarations (see sections 5.1 and 5.2), and any preliminary in-line C code. The rule
section is patterns to search for and actions to execute when the pattern is found. The
user subroutines are C support routines used by the actions. The definition and user
subroutine sections are optional. The second "%%" is optional, but the first is required
to mark the beginning of the rules.

Rules start in the first column and are a pattern and an optional action. Patterns are
written with regular expressions (section 1). Actions (section 2) are C program
fragments to be executed when the pattern is found. Whitespace (blanks or tabs) separate
patterns and actions. Unmatched input is handled by the default action (see "-s" option in
Chapter III, section 1.2).

The rule section can be empty. The default action applies to all unmatched input. If the
"-s" is not specified, the default action is to copy all input to the output. The minimum
PCLEX program is one line:

%%

It copies the input to the output.

C code needed in the scanner can be included in one of three ways. Lines that start with a
"#" in the first column are passed through intact. This allows preprocessor directives. C
comments and lines that start with a tab or a space are also passed through intact.
Arbitrary lines between a "%{" line and a "%}" line are also passed through. The
bracketing lines are not copied to the C scanner file. The brackets must start in the first
column. For example:

Page 75

PCLEX Users' Manual - Printed December 11, 2000

#include <stdio.h>
#define MAX_WIDGET 100
#define LONG_MACRO \

rest of the macro

/* C comments */
%{
int word_count = 0;
static void do_nothing(void);
%}

C code in the definition section is copied to near the start of the scanner. Header file
#includes, global variables, C macro definitions, and redefinition of the pre-defined
macros go here. C code in the rule section (other than actions) is copied to the start of the
scanner function, just after the scanner function's own local variables. Local variables
used by the actions and initial code to be executed each time the scanner is called goes
here.

1. Regular Expressions

A regular expression specifies a set of strings to be matched. It contains text characters
(which match themselves in the text to be compared) and operator characters (which
specify repetitions, choices, and other features). The letters of the alphabet and the digits
are always text characters.

1.1 Operators

The operator characters are:

" \ [] ^ - ? . * + | () $ / {} % <>

and if they are to be used as text characters, they must be put in quotes or preceded by a
backslash. In addition, "#" and "/" are not text characters in the first column.

Whatever is between a pair of double quotes (") is to be taken as text characters. An
operator character can also be turned into a text character by preceding it by a "\", the
escape character. The following patterns are all equivalent:

xyz\+\+
xyz"++"
"xyz++"

Another use of the quoting mechanisms is to get a blank into an expression. Normally,
blanks and tabs end a rule. Any blank not within a character class (see section 1.2) must
be quoted or escaped. PCLEX recognizes the older Kernighan and Ritchie (K&R) C
escape sequences: "\n" is a new line, "\t" is a tab and "\040" is the blank character (the
syntax of ANSI C escape sequences is slightly different). The NUL character ("\0") is
not allowed in patterns.

Page 76

Copyright (c) 1986-2000 Abraxas Software, Inc.

1.2 Character Classes

Two slightly different patterns (for example, "sit" and "sat") can be combined into the
single pattern ("s[ai]t"). The "ai" enclosed in square brackets, "[" and "]", matches a
single character, either a single "a" or a single "i". The brackets enclose a character class,
a list of alternatives to match. Character classes can include escape sequences (for
example, "[\t\n]" matches a whitespace character). A character class is negated or
complemented by a caret at the beginning. For example, "[^ \t\n]" is any character except
a blank, tab, or end of line. Note that this is not the same as the printable characters, it
includes the control characters.

The other operator in character classes is the range operator. The digits form a
continuous range and can be abbreviated to "[0-9]" instead of "[0123456789]". The octal
digits are "[0-7]". The lower and upper case letters both form ranges and "[a-zA-Z]"
matches any letter. The order of the range limits is unimportant, "[a-z]" and "[z-a]" are
equivalent. Ranges of other characters are allowed, but PCLEX gives a warning
message. The actual contents of the character class are machine-dependent. To use the
hyphen as itself in a character class, put it at the end or beginning of the character class or
escape it with a backslash, e.g., "[-a+]", "[+a-]", and "[a\-+]" are all equivalent. The
character class "[\001-\0177]" is all allowed characters and "[-~]", "[^\01-\037\0177]",
and "[\040-\0176]" are the 96 ASCII printable characters.

1.3 Repetition

Repetitions of elements are indicated by the "*" and "+" operators. The regular
expression "A*" matches any number of A's, including none, while "A+" matches one or
more A's. The pattern for C identifiers is:

[_a-zA-Z][_a-zA-Z0-9]*

A specific number of repetitions is specified by a number inside braces,"{" and "}". For
example, "AA" and "A{2}" both match exactly two A's. Two numbers separated by a
comma inside the braces specify a range of repetitions. For example, "[a-z]{1,5}"
matches one to five lower-case letters.

1.4 Arbitrary Character

The "." operator matches any character except the end of a line. For example, "a.b"
matches "aab", "a0b", "a\b", etc. To avoid letting unmatched input fall through to the
default action, the last rule in the section is typically:

. /* action for all other input */

Do not use the patterns ".*" or ".+" to replace the default action, hoping to get unmatched
input text in chunks, instead of a character at a time. The ".+" pattern matches entire lines
and overrides almost any other pattern. Use the single character pattern in the example to
replace the default action, to start with. (When you are proficient with PCLEX, consider
redefining the ECHO macro as described in Appendix III.)

Page 77

PCLEX Users' Manual - Printed December 11, 2000

1.5 Alternation and Grouping

The "|" operator indicates alternation (either this or that) and the "()" operator pair
indicates grouping. The expression "(ab|cd)" matches either "ab" or "cd". Alternation is
the lowest precedence operator. As a complete pattern, "ab|cd" also matches "ab" or
"cd". The patterns in each column below are equivalent to each other:

ab|cd [a-c]
(ab|cd) (a|b|c)
(ab)|(cd)

Multi-character patterns can be repeated by enclosing them in parentheses and following
them with either "+" or "*". For example, "(abc)+" matches any number of repetitions of
"abc", i.e., "abc", "abcabc", "abcabcabc", etc. The patterns "(a|e|i|o|u)+" and "[aeiou]+"
are equivalent and match any number of consecutive vowels.

1.6 Optional Expressions

The "?" operator indicates that the preceding element is optional. For example, "ab?c"
matches either "ac" or "abc". Groups and character classes can also be optional,
"a(b|c)?d" and "a[b-c]?d" both match "ad", "abd", and "acd".

1.7 Context Sensitivity

Sometimes it is desirable to match a pattern only within a specific context. Context
before the pattern (left context) is handled with start conditions, exclusive start
conditions, actions, and the "^" operator. Context after the pattern (trailing context) is
handled with the "/" and "$" operators, and the "yyless()" action.

The "^" character is only an operator in the first column of a pattern (or as the first
character in a character class). Elsewhere, it is a text character. The "^" operator anchors
a pattern to the start of a line. The pattern must start at the beginning of the line to match.
For example:

^[\t]*#.*

matches C preprocessor directives. Other left context methods are explained in section 5.

The "$" character is an operator only when it's the last character in a pattern. Elsewhere,
it is a text character. The "$" operator anchors the pattern to the end of a line. It does not
match the end of line character(s), it restricts matches of the pattern to immediately before
the end of a line. For example, the scanner program:

^[\t]+$;

matches and discards trailing whitespace on lines. The ends of lines are not matched and
remain in the output.

The "/" operator is a more general way of indicating trailing context. The pattern
precedes the "/" and the trailing context follows. For example, the patterns "abc$" and

Page 78

Copyright (c) 1986-2000 Abraxas Software, Inc.

"abc/\n" are equivalent. Both match three characters and leave the end of line for another
pattern to match.

Another way to handle trailing context is with the "yyless()" action. It is described in the
next section on actions.

2. Actions

When a pattern is matched, the scanner executes the corresponding action, the C code
associated with the pattern. If PCLEX finds a match of a pattern without associated C
code, it will write a copy of the matched input to the output; that is, PCLEX does the
default ECHO action.

PCLEX allows multiple statements in an action. If they will fit after the pattern on the
same line, no braces are necessary. Longer actions are enclosed in braces, "{" and "}",
and can span several lines. The braces must be balanced. PCLEX's brace counting can
be thrown off by braces in comments and quoted strings. If an action has either of these,
use "%{" "%}" brackets. These brackets cannot be nested or substituted for braces. Do
not put either bracket in a comment or quoted literal. If you need one in a string, use
escape sequences to break it up. For example, instead of "%{...%}", use "%\{...%\}"
on older K&R C compilers and "%" "{...%" "}" on ANSI C compilers.

3. Ambiguous Rules

PCLEX generated scanners compare the patterns against the input stream. The longest
string that matches a pattern is read into "yytext[]", the pattern's action executed, and
scanning resumes on the remaining input. If more than one pattern matches this input
string, the order of the patterns in the scanner description file determines which matches.
The first pattern is the first choice. For example, given the patterns:

abc
[abc]+

Both patterns match the first three characters of "abcd". The action associated with the
first pattern will be taken.

A frequent shortcut for scanners used with parsers is to have no explicit rules for single
character operators and delimiters, and to add a final rule like:

. return yytext[0];

This matches any character not otherwise matched and passes it to the parser. Since the
parser has to deal with invalid input anyway, this leaves the problem of reporting invalid
characters as well as invalid syntax up to the parser. This centralizes both lexical and
syntactic error reporting in one place.

Sometimes the above rules are not sufficient. One may need an action determining that
another match is better. The "REJECT;" action forces the scanner to put back the text
matched and take the next best match. The REJECT allows PCLEX use even in
situations where the basic pattern matching mechanism is not quite general enough.

Page 79

PCLEX Users' Manual - Printed December 11, 2000

Sometimes, matches should not be laid end to end. Instead, all possible matches, even
ones that overlap are wanted. For example, consider the following scanner program to
count the frequency of pairs of letters (digraphs) in a file:

%%
[a-zA-Z][a-zA-Z] ++digraph[yytext[0]][yytext[1]];

This scanner counts consecutive pairs. For example, in the word "pair" it would count
two digraphs: "pa" and "ir". To count overlapping pairs, i.e., "pa", "ai", and "ir", the
following changes are needed:

%%
[a-zA-Z][a-zA-Z] {
 ++digraph[yytext[0]][yytext[1]];
 REJECT;
 }

Note that this can also be done another way:

%%
[a-zA-Z][a-zA-Z] {
 ++digraph[yytext[0]][yytext[1]];
 yyless(1);
 }

For clarity, some details necessary for a working program have been omitted. The
complete programs are in the \DIGRAPH directory.

In general, the REJECT action is useful for matches that overlap and for instances where
semantics and lexical analysis interact.

4. Definitions

Definitions (macros for regular expressions) are declared in the first section of the
scanner description (before the first "%%"). They are of the form:

name translation

and must start in the first column. The translation is substituted in the rule section
wherever "name" appears within braces. The following scanner program matches C
identifiers:

alpha [a-zA-Z]
digit [0-9]
%%
({alpha}|_)({alpha}|{digit}|_)*

In PCLEX, the replaced text is enclosed in parentheses. For example, given the
definition and regular expression:

Page 80

Copyright (c) 1986-2000 Abraxas Software, Inc.

NAME [A-Z][A-Z0-9]*
%%
foo{NAME}?
%%

PCLEX (and FLEX) will match "foo" because they expand the rule to:

foo([A-Z][A-Z0-9]*)?

Both of the character classes are included in the optional part. UNIX LEX will not match
"foo" because it expands the rule to:

foo[A-Z][A-Z0-9]*?

Here, the "?" only applies to the second character class. The first character class is in the
required part.

5. Context Sensitivity

Not all programs have the same syntax throughout the entire input. For example, the
three different sections in both PCLEX and PCYACC have quite different syntax.
PCLEX provides several facilities to make a pattern sensitive to left and right context.
This section describes fore ways to handle this situation: with the actions and user
subroutines (section 5.1), with start conditions (section 5.2), with exclusive start
conditions (section 5.3) and with special position anchors (section 5.4).

5.1 Actions and User Subroutines

Actions can explicitly set and test variables to change the output depending on some prior
condition. This method is suitable when the output is context dependent and the input
syntax is constant regardless of context.

In an action, the matched text is pointed by the character pointer "yytext", and its length
is in the integer variable "yyleng". The amount of matched text can be changed in the
action. "yytext" should not be changed directly.

The built-in action "yyless(n)" indicates that only the first "n" characters of the current
match are to be retained and the rest are to be pushed back onto the input for rescanning.
The "yyless()" function provides the same sort of lookahead offered by the "/" operator
(see section 1.7) in a different form. The following two rules are equivalent:

abcd/efg ;
abcdefg yyless(4);

The difference is that yytext holds "abcdefg" in the second rule; yytext holds "abcd" in
the first rule.

Page 81

PCLEX Users' Manual - Printed December 11, 2000

5.2 Start Conditions

Start conditions allow turning some patterns on in some contexts and off in others.
Which is useful in the case one requires that one token precede another. The scanner
starts off with all start conditions off, the default start condition. Actions put the scanner
in a start condition and return it to the default start condition. Each start condition must
first be declared in the definition section with a line like:

%Start name1 name2

The start conditions may be named in any order. The keyword "%Start" can be
shortened to either "%s" or "%S". The start condition is referenced at the start of the
applicable rule(s) in pointed brackets, "<" and ">": <name1> or <name2>.

To enter start condition "name1", execute the action statement:

BEGIN(name1);

To reset the start condition to the default, execute the action:

BEGIN(0);

For example:

%Start name1
%%
pattern1 { BEGIN(name1);}
<name1>pattern2 { BEGIN(0); action; }

In our example, pattern2 is only recognized when the scanner is in the start condition
"name1", that is, pattern1 had been matched. After pattern2 being matched the scanner
reset the start condition to the default.

The scanner can be in only one start condition a at time. A rule may be active in several
start conditions. For example:

<name1,name2,name3>pattern ;

Except when the scanner is in an exclusive start condition, any rule not beginning with a
"<>" prefix is always active. For example, in processing a SDF, one may code something
like:

 %Start section2
 ...
 %%
 ...
 ^"%%" { BEGIN(section2);}
 ...

In the example all rules not beginning with a "<>" will be active no mater it processes
section1 or section2 of the input SDF.

Page 82

Copyright (c) 1986-2000 Abraxas Software, Inc.

The current definition of the BEGIN macro is:

#define BEGIN yy_start = 1 +

This maintains compatibility with UNIX LEX. However, there is a trap for the unwary
here. The naive expectation for the action "BEGIN 2 << x;" is
"yy_start = 1 + (2 << x);", the reality is "yy_start = (1 + 2) << x;" (in C, "+" is higher
precedence than "<<"). It is strongly suggested that you always enclose the "BEGIN"
expression in parentheses. This will give the expected results, even if the BEGIN macro
definition changes in future releases.

5.3 Exclusive Start Conditions

A regular start condition turns on additional rules when active. An exclusive start
condition turns off all normal rules and turns on only those rules prefixed with the
exclusive start condition name. Exclusive start conditions are declared in the definition
section with "%x" instead of "%s".

Matches can theoretically be of any length (for example, "(.|\n)*" matches the entire input
file). The practical limit is set by the size of an internal buffer. If a match can span
several lines, it should be broken into several matches, each not exceeding a line in
length. A good way to break up the matches is with start, middle, and end patterns. The
start patterns match the beginning, (e.g., the "/*" in a C comment) and BEGIN the
exclusive start condition. The middle patterns are prefixed by the exclusive start name in
"<>" and match partial or whole lines in the middle (e.g., anything up to the end of the
line or a "*/"). The end patterns match the character(s) that close the whole thing (e.g.,
"*/") and reset the start condition with "BEGIN(0);".

C comments can extend over several lines. Whatever the scanner's buffer size, some
program will exceed it. The C comments portion of the ANSI C scanner in \ANSIC
looks like this:

%x COMMENT
%%
"/*" BEGIN(COMMENT);
<COMMENT>"*/" BEGIN(0);
<COMMENT>[^*\n]+ ;
<COMMENT>\n ++yylineno;
<COMMENT>"*" ;
%%

The COMMENT exclusive start condition is declared in the definition section. The first
rule recognizes the start of a C comment. The second rule recognizes the end. To avoid
overflowing the scanner's internal buffer, the comment contents are recognized a line at a
time. The third and forth rules do this. The third and fifth rules fix a subtle problem. If
the third rule read "[^\n]+", it would match every line after the start of a comment
including the asterisk of the closing "*/" (except in the case of a "*/" at the start of a line
because the second and third rules would both match the same length text and the earlier
rule takes precedence). The "*" in the third rule prevents it from matching the comment's
close. The fifth rule matches a solitary "*" without a following "/".

Page 83

PCLEX Users' Manual - Printed December 11, 2000

The above code would not work if COMMENT had been declared as a regular start
condition name since all regular patterns would still be active in the COMMENT state.
For extensive examples of exclusive start conditions, see SCAN.L in \PCLEX on the
PCLEX disk.

5.4 Special Position Anchors

The "^" operator anchors a pattern to the start of a line. The "$" operator anchors the
pattern to the end of a line. And the "/" operator is used for indicating trailing context.

Page 84

Copyright (c) 1986-2000 Abraxas Software, Inc.

APPENDIX A. INSTALLATION

Installation of PCLEX is simple and straight forward. Its self-contained nature makes it
much easier to install than comparable products.

1. System Requirements

PCLEX will work on most MS-DOS and Microsoft Windows 95/NT computers.
Specifically, all IBM PCs, XTs, ATs, and compatibles, as well as IBM PS2s, i86, and
Pentium based computers. In fact PCLEX is available for all computer operating systems
and architectures.

The following minimum configuration is sufficient to run PCLEX:

 640KB memory
 3.5 inch floppy drive
 20 MB hard disk

The following programs are needed for software development using PCLEX:

1) A text editor for programming (like BRIEF, EPSILON, EMACS, or EDLIN). Many
word processing programs (like Word star) will work in non-document mode. The
scanner description file must be straight ASCII with no IBM extended characters, hidden
characters, or other characters with the high bit set.

2) A C/C++ compiler (like Microsoft Visual C++).

2. Making Working Copies

It is always a good practice to make copies of your original diskettes to protect against
accidental damage. Installation should be done from the copies and the original diskettes
stored safely away from the computer and other source of heat or strong magnetic fields
like music speakers, motors, and transformers.

3. Installing PCLEX

PCLEX eliminates the need for a separate library of source code, which was required by
earlier UNIX versions, and is still required by many other implementations. This change
makes it transparent to you as user that there is a library routine that supports PCLEX's
operation. This change also simplifies the installation process.

To perform the standard installation, follow these steps (these are many alternate ways of
installing PCLEX):

1) create a directory for PCLEX to reside (e.g., \PCLEX):

Page 85

PCLEX Users' Manual - Printed December 11, 2000

C>cd \
C>mkdir pclex
C>cd pclex

2) insert the diskette containing PCLEX in drive A:

3) copy files from the diskette to the hard disk, the /s switch allows you to copy all files in
the diskette including sub directories:

C>copy a:*.* /s

4) modify "AUTOEXEC.BAT" file to add "\PCLEX" to the PATH environment
variable and reboot.

At this point, the installation process is complete and PCLEX is ready to go. (Files in
sub directories of the distribution diskette contain several interesting examples, which
you may also want to copy onto your hard disk at this time; or you may choose to copy
them later as you need them.)

NOTE: If you already have a directory (like "\BIN") set up for executable programs,
"PCLEX.EXE" may be directly copied to that directory. No changes need to be made to
the "AUTOEXEC.BAT" file. However, it is recommended that you create a separate
directory for PCLEX. Creating a separate directory makes it easier to organize your
PCLEX related files and example PCLEX programs.

Page 86

Copyright (c) 1986-2000 Abraxas Software, Inc.

APPENDIX B. ERROR MESSAGES

The error messages produced by PCLEX have the following format:

Lxxxx: Error Message

L0001: illegal character
 the inputted character is out of ASCII character set

L0002: incomplete name definition
 in the definition section of a SDF, a name following only
 white spaces on a line

L0003: indented code found outside of action
 in the rule section, only comment and action lines can be indented

L0004: undefined {name}
 a name which has not been defined in the definition section
 is used in the rule section

L0005: bad start condition name
 a name can contain only letters, digits, underscores,
 and must not start with a digit

L0006: missing quote
 in the rule section only odd number of quotes being in a pattern

L0007: bad character inside {}'s
 in the rule section only a defined name or a number list can be inside {}'s

L0008: missing }
 in the rule section more {'s than }'s in a pattern

L0009: bad name in {}'s
 a name can contain only letters, digits, underscores,
 and must not start with a digit

L0010: read error in section 3 of the SDF
 system function read() failed to read the contents of section 3
 in a SDF into a buffer

L0011: error in processing section 1 of the SDF
 unknown syntax or system error found in processing start
 condition name declaration or exclusive start condition name
 declaration in the definition section of a SDF

L0012: bad start condition list in section 1 of the SDF
 syntax error in a start condition name list or exclusive start condition

Page 87

PCLEX Users' Manual - Printed December 11, 2000

 name list. usually caused by some illegal characters being in the
 names or by their self in the name list

L0013: unrecognized rule in section 2 of the SDF
 syntax error in a rule

L0014: undeclared start condition
 a start condition name which has not been declared in the definition
 section is used in the rule section

L0015: bad start condition list in section 2 of the SDF
 error in a start condition name list or exclusive start condition
 name list. usually caused by some bad names or undeclared start
 condition names in the list

L0016: trailing context used twice
 end of line anchor '$' used twice in a pattern

L0017: illegal trailing context
 both head and trail are variable-length; the trailing context had better
 be fixed-length

L0018: bad iteration values
 inside an iteration operator, {n1, n2}, n2 must be bigger then n1 and
 n1 must be bigger then zero

L0019: iteration value must be positive
 inside an iteration operator, {n1, }, n1 must be bigger then zero

L0020: null in rule
 null character '\0' found in a rule

L0021: negative range in character class
 in a character class [c1-c2], the ASCII value of c2 must bigger then
 that of c1

L0022: symbol table memory allocation failed
 system error, can't allocate memory

L0023: name defined twice
 name defined twice in the definition section of a SDF

L0024: start condition declared twice
 start condition name declared twice in the definition section of a SDF

L0025: input rules are too complicated
 the current maximum on number of NFA states plus the amount to
 bump above by is bigger then the maximum number of NFA states

L0026: found too many transitions
 too many possibilities in making transitions from one state to others

Page 88

Copyright (c) 1986-2000 Abraxas Software, Inc.

L0027: PCLEX scanner push-back overflow
 unputing more characters then inputted

L0028: fatal scanner internal error
 PCLEX scanner can not find what action should be done upon a
 token inputted

L0029: PCLEX input buffer overflowed
 the inputted pattern string is more than 128 characters

L0030: PCLEX scanner saw EOF twice
 system error, the scanner should not see EOF twice for one run

L0031: memory allocation of an internal integer array failed
 system error, can't allocate memory

L0032: dynamic memory failure in copying string
 system error, can't allocate memory

L0033: escape sequence for null not allowed
 \\0 is not allowed

L0034: illegal \^ escape sequence
 \\^ is not allowed

L0035: memory reallocation of a dynamic array failed
 system error, can't allocate memory

L0036: consistency check failed in the epsilon closure
 system error, the state should be marked if we've already pushed it
 onto the stack

L0037: dynamic memory failure in converting a set of NDFA states into a DFA state
 system error, can't allocate memory

L0038: consistency check failed in symbol transitions
 system error, input character put in wrong place

L0039: bad transition character detected
 system error, input character put in wrong place

L0040: -p or -C flag must be given separately
 command line message, other flags could be grouped together

L0041: unknown flag
 command line message

L0042: could not create scanner output file
 system function freopen() does not work well

L0043: extraneous arguments given
 command line message

Page 89

PCLEX Users' Manual - Printed December 11, 2000

L0044: can not open input file
 system function fopen() does not work well

L0045: can not open skeleton file
 system function fopen() does not work well

L0046: can not open temporary action file
 system function fopen() does not work well

L0047: fatal parse error at the input SDF
 unrecoverable grammar syntax error found in the SDF

L0048: fread() in PCLEX scanner failed
 system function fread() does not work well

Page 90

Copyright (c) 1986-2000 Abraxas Software, Inc.

APPENDIX C. EXTENDING AND CUSTOMIZING SCANNERS

PCLEX has a number of macros that can be redefined to customize or extend the
generated scanner. The input stream functions ("input()" and "unput()") can be called by
actions, user subroutines, and other parts of the program.

1. Macros

The following macros are those most likely to redefined. For portability, they should be
undefined before being redefined. "yywrap()" can be redefined as a macro or as a
function.

"yywrap()" - called when the scanner reaches the end of the file. If it evaluates to
non-zero, the scanner finishes up processing and returns a zero to the
caller. If "yywrap()" evaluates to zero, the scanner continues, expecting
new input. This is useful for doing file inclusion and other multiple input
file scanning. To do this, yyin also needs to be adjusted. A common way
is using system function freopen() to make yyin pointing to a new file.
The predefined "yywrap()" evaluates to 1.

"ECHO" - is the default action if the "-s" option is not given. The predefined
"ECHO" macro copies the matched input to the output stream. It is
equivalent to:

fputs(yytext, yyout);

Redefine it to change the default action.

"YY_DECL" - is a macro that declares the scanning function generated by
PCLEX. It can be redefined to change the function name, type, or
argument list. For example:

#undef YY_DECL
#define YY_DECL float lexscan(float a, float b)

gives the scanner function the name "lexscan". It takes two floats as
arguments and returns a float. YY_DECL is predefined as:

 #define YY_DECL int yylex()

Page 91

PCLEX Users' Manual - Printed December 11, 2000

"YY_INPUT" - macro called by "input()" to read more input text into a buffer.
Its three arguments are: the buffer to read the input into, an integer variable
that receives the number of characters actually read, and the size of the
buffer. The default value is:

#define YY_INPUT(buf,result,max_size) \

if (fgets(buf, max_size, yyin) != NULL) \
result = strlen(buf); \

else if (!ferror(yyin)) \
result = YY_NULL; \

else \
YY_FATAL_ERROR \

("fgets() in flex scanned failed");

A faster, though not as portable version is:

#define YY_INPUT(buffer,result,max_size) \

if ((result=read(fileno(yyin),buf,max_size)) < 0) \
YY_FATAL_ERROR \

("fgets() in flex scanned failed");

On some compilers, The "read()" function does not do end of line
translation.

Because of the buffering within "input()", "YY_INPUT" should not be
called, except by "input()". If your code needs to read the input stream
directly, call "input()".

"YY_BUF_SIZE" - is the size of the input buffer used "input()" and "unput()".
The longest allowed match is "YY_BUF_SIZE - 1" , which evaluates to
254.

"YY_NULL" - is the value of the "result" in "YY_INPUT" macro at an end of
file (EOF) on the input stream.

2. Variables

"FILE *yyin" - input stream read by "input()", initialized to "stdin".

"FILE *yyout" - output stream written to by "ECHO", initialized to "stdout".

3. Functions

"input()" - returns the next input character.

"unput(c)" - pushes the character "c" back onto the input stream to be later read
by "input()".

Page 92

Copyright (c) 1986-2000 Abraxas Software, Inc.

4. Scanner Skeleton Format

PCLEX combines the user's C code, tables generated from the patterns, and the scanner
code that uses the tables (the scanner skeleton). The default scanner skeleton code is built
into PCLEX. With the -P option, you can use your own skeleton code. LEXSCAN.C in
\PCLEX is equivalent to the built-in skeleton. A skeleton is in four sections separated by
lines beginning with "%%". The skeleton is copied to the scanner C file with the "%%"
lines replaced by code copied from the scanner description file or tables generated by
PCLEX.

The first section of the skeleton is header file #includes, C macro definitions, and
function prototypes. The first "%%" line is replaced by C code from the definition
section and the scanner tables generated by PCLEX. The second section is the "unput()"
and "input()" functions that buffer the input stream and handle the reading ahead and
backing up done for trailing context, "yyless()", and other methods of lookahead. The
scanner function header ("YY_DECL") and its local variable declarations finish up the
second section. The second "%%" line is replaced by C code from the rule section of
the scanner description file. This code is declarations local to the scanner function used
by the actions and executable code to be run each time the scanner function is called. The
third section is the bulk of the code that interprets the generated tables and does the actual
pattern matching. The third "%%" line is replaced by the actions' code. This code is in
a "switch" statement. Each action's code is preceded by a "case" label and followed by a
"YY_BREAK" macro call. The "YY_BREAK" macro normally is a "break" statement.
The fourth section is the rest of the scanner function. The entire users' subroutine section
is copied verbatim to the scanner C file, after the fourth section.

Study the LEXSCAN.C code carefully and look at several generated scanner C files
before writing your own scanner skeleton.

Page 93

PCLEX Users' Manual - Printed December 11, 2000

APPENDIX D. BIBLIOGRAPHY

Aho, A.V. and Ullman, J.D. "Principle of Compiler Design", Addison-Wesley, Reading,
Massachusetts, 1977.

 This first edition is much better than the current ‘second edition’.

Aho, A.V. and Ullman, J.D. "The Theory of Parsing, Translation, and Compiling", Vol.
1, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

 The original ‘theory’ of yacc table generation.

Barrett, William A. "Compiler Construction", 2nd Edition, Science Research Associates,
Chicago.

Bickel, M. A. "Automatic Correction to Misspelled Names: A Fourth Generation
Language Approach", CACM, 30:224-228, 1987.

Chapman, N. "Regular Attribute Grammars and Finite State Machines" SIGPLAN
Notices, 24(6):97-104, 1989

Chomsky, Noam, "Three models for the description of languages," IEEE Transactions on
Information Theory, Vol. 2 (1956), pg. 113-124.

Farmer, Mick. "Compiler Physiology for Beginners", Chartwell-Brat.

Fischer, Charles N. and LeBlanc, Richard J. "Crafting a Compiler", Addison-Wesley,
1988.

Friedl, Jeffery E.F. “Mastering Regular Expressions” O’Reilly & Associates 1997

 This book is an excellent reference to the general field of regular expressions.

Genillard, C. and A. Srohmeier. "A Grammar Description Language for Lexical and
Syntactic Parsers" SIGPLAN Notices, 23(10):103-122, 1988

Grune, D. and Jacobs, C.J.H. "Parsing Techniques", Ellis Horwood, Chichester, England,
1990.

Holmes, Jim. “Object-oriented compiler construction” Prentice Hall 1995

 Our new Pclex Object Oriented Toolkit is based on the philosophy of this book.

Johnson, S.C. and Lesk, M.E. "Language Development Tools", The Bell System
Technical Journal, Vol. 57, No. 6, Part 2 (July-August 1978).

Johnson, W. L., Porter, J. H., Ackley, S. I., and Ross, D. T. "Automatic Generation of
Efficient Lexical Processors using Finite-State Machines", CACM, 11(12):805-
813, 1968.

Page 94

Copyright (c) 1986-2000 Abraxas Software, Inc.

Lemone, K. A. "Design of Compilers, Techniques of Programming Language
Translation", CRC Press, 1992.

Lesk, M.E. and Schmidt, E. "Lex - A Lexical Analyzer", Unix Programmer's Manual,
Bell Laboratories, 1978.

Kernighan, B.W. and Ritchie, D.M. "The C Programming Language", Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

Mason, T., Brown D., and Levine, J. "Lex & Yacc", O'Reilly & Associates, Second
Edition, 1992.

 This is an excellent book for beginners. The standard free PCYACC DEMO will
do all examples in this book.

Pyster, A.B." Compiler Design and Construction", Van Nostrand Rheinhold, New York,
New York, 1980.

 How to write a pascal compiler using lex&yacc.

Schreiner, A.T. and Friedman, Jr. H.G. "Introduction to Compiler Construction with
UNIX", Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

 How to write a C compiler using lex&yacc.

Szafron, P. and R. Ng. "LexAGen: An Interactive Incremental Scanner Generator", 20(5),
1990.

Page 95

PCLEX Users' Manual - Printed December 11, 2000

APPENDIX E. GLOSSARY

Action: Fragment of C code executed when its corresponding pattern is matched.

Algorithm: step by step instructions on how to do some task, that guarantees

success. For example: in cooking, recipes are algorithms.

Backus-Naur Form (BNF): a notation used for describing context free grammars.
It was first used in the report on the ALGOL-60 programming language
for describing the syntax.

Backus-Normal Form (BNF): see Backus-Naur Form

Declaration Section: The first part of a grammar description program, in which

one defines terminal symbols for grammars, declares types for grammar
symbols, precedence and associativity for grammar symbols.

Default: the action or value used if no action or value is explicitly given.

Default action: The default action of PCLEX is to copy the unmatched text to the
output.

Definition Section: The first part of a scanner description program, in which one
defines names, declares global variables, C macros, and #includes needed
header files.

Exclusive Start Condition: a state used to turn off all normal rules and turn only

those rules prefixed with the exclusive start condition name

Equivalent: having identical effects. Two patterns are equivalent if every input
that one matches the other also matches.

Grammar: the structures of a language and the rules for combining them.

Grammar Description File (GDF): input file to PCYACC describing the syntax of
the target language.

Grammar Description Language (GDL): the language used to describe the syntax
and parsing of the target language, a combination of BNF and C.

Grammar Description Program (GDP): programs written in GDL for parsing
programs in the target language.

Grammar Rule Section: the second part of a grammar description program, where
grammar rules and their associated actions are defined.

Keyword: word or identifier reserved by the language for special use. Examples

in C are: "if", "else", "void".

Page 96

Copyright (c) 1986-2000 Abraxas Software, Inc.

Lexical Scanner: Front end of a parser, which reads the raw text input and
partition them into meaningful lexical units, or tokens, of the target
language.

Macro: an expression that resembles a constant or a function call. The C

preprocessor replaces every macro expression with its appropriate C
expansion before compilation.

Options: command line arguments to change the action of a program. Also

known as switches and flags.

Parser: A program that analyzes the syntax of program input.

Parser Generator: A program that is capable of automatically generating parsers

from a language description.

Port: (verb) short for transport. Means to move a program to another hardware or

software environment and make any necessary changes

PCYACC: Abraxas Software's implementation of YACC (see), a parser generator
.
Program Section: third and last section of a grammar description program, where

needed C functions can be included.

Regular Expression: a notation for defining a regular language

Reserved Word: see Keyword.

Rule Section: the second part of a scanner description program, where the input

patterns to match and their corresponding actions are defined.

Scanner: see Lexical Scanner.

Scanner Definition File (SDF): input file to PCLEX that defines the tokens of the

input language and any auxiliary processing.

Scanner Definition Language (SDL): the language used to write scanner

description programs; a combination of regular expressions and C.

Scanner Definition Program (SDP): programs written in SDL that describe the

lexical analysis of a target language.

Start Condition: a state used to turn some patterns on in some contexts and off in

others.

Target Language: the language described by the scanner description program

Token: Smallest syntactic unit, usually recognized by scanners or lexical analysis.

Examples are: identifiers, keywords, operators, terminators, and
delimiters.

Page 97

PCLEX Users' Manual - Printed December 11, 2000

User Subroutine Section: third and last section of a scanner description program,
where needed C functions can be included.

YACC: Yet Another Compiler-Compiler, a widely available parser generator.

%Start: PCLEX keyword for declaring start condition

%S: PCLEX keyword for declaring start condition

%s: PCLEX keyword for declaring start condition

%x: PCLEX keyword for declaring exclusive start condition

%%: Delimiters for separating different sections of a scanner description program

%{ ... %}: Delimits C definitions in definition section

< ... >: Delimits start conditions or exclusive start conditions in the rule section

{ ... }: Delimits macro names in the pattern part of a rule.

Page 98

Copyright (c) 1986-2000 Abraxas Software, Inc.

APPENDIX F. DIFFERENCES BETWEEN LEX AND PCLEX

o The FLEX engine is used.
o Command line format has a PCYACC flavor (see section 2).
o Exclusive start conditions ("%x") have been added (see 3.5.2).
o Ratfor scanners ("%r") are not supported.
o Translation tables ("%t") are not supported.
o Internal array sizes are dynamically resized. The "%p", "%n", "%e", "%a",

"%k", and "%o" lines are ignored.
o There is no run-time library to link to.
o Definitions are enclosed in parentheses when expanded (see 3.4).
o Only one input file is supported. LEX concatenates all the files in the

command line (see section 2).
o multiple actions per line are allowed (see 3.2).
o the undocumented LEX variable "yylineno" is not supported (see the

examples in section 8 for how to explicitly support "yylineno".
o the "yymore()" and "output()" functions are not supported.

Page 99

PCLEX Users' Manual - Printed December 11, 2000

APPENDIX G. DIFFERENCES BETWEEN FLEX AND PCLEX

o Command line format has a PCYACC flavor (see section 2).
o no fast (FLEX "-f" option) or full (FLEX "-F" option) tables.
o no equivalence classes (FLEX "-ce" option) or meta-equivalence classes

(FLEX "-cm" option).
o default scanner skeleton is stored internally.
o the FLEX header files ("fastsdef.h", "flexsdef.h", and "flexscom.h") are stored

internal to PCLEX and output at scanner generation time.
o support -c and -C options.
o support -h options.
o interactive scanners (FLEX "-I" option) are always generated.
o the REJECT action is always supported.

INDEX

-, 20

", 20, 75

#, 75

#line directives, 11, 13

$, 20, 77

$$, 35

$1, 35

$2, 35

%%, 24

%% delimiter, 22

%{, 24

%}, 24

%s, 81

%S, 81

%Start, 81

%token, 26, 34

%union, 27

%x, 82

(and), 77

*, 21, 76

., 19, 24

/, 19, 75, 77, 83

?, 21, 77, 80

[and], 20

\, 20, 75

^, 19, 24, 77

{ and }, 20, 76

|, 19, 77

+, 21, 24, 76

abstract machine, 16

action, 13, 24

action part of a rule, 24

Alfred Aho, 8

alphabet, 17

artificial language, 15

assembler, 15

assembly language, 15

Basic, 15

blank line, 24

C, 9, 15, 17

C character escape, 20

C header file, generated by PCYACC, 26,
27

C multi-character operator, 44

C++ scanners, 11

case-insensitive, 10, 12

character class, 20, 24

character literal in C, 45

Chomsky, Noam, 68

closure operation, 21

closure operator, 21

Page 101
CodeView, 11

compilation phase, 16

compiled execution, 16

compiler, 8, 16

compiler writer, 26

computer language, 15

context free grammar, 68

context sensitive grammar, 68

context-free grammar, 16

context-sensitive grammar, 16

corresponding actions, 24

dates.h, 34

DBCS, 45

declaration section, 34

default action, 11, 13

definition section, 21, 22, 24, 74

derivation, 18

deterministic finite-state machine, 25, 71

DFSM, 25, 71

disassembler, 15

double byte character set, 45

ECHO, 76, 78, 90

e-closure(s), 72

e-closure(S), 72

empty action, 24, 32, 44

empty string, 71

Eric Schmidt, 8

error, 35

EXAMPLE.L, 11

execution phase, 16

finite-state automaton, 16, 21

finite-state grammar, 18

finite-state machine, 21, 70

FLEX, 8

Foreign Support, 13

formal grammar, 16

formal language, 16

FORTRAN, 9

FS grammar, 18

FSM, 21

GDF, 30

GDL, 26

GDP, 26

goal symbol, of GDF, 34

grammar, 16, 17, 68

grammar definition file, 34

grammar description language, 26

grammar description program, 26

grammar rule, 17

grammar rule section, 34

Gregorian calendar, 29

help screen, 10, 12

high-level language, 15, 16

identifier and keyword in C, 44

ideographic character, 45

input pattern, 24

input(), 91

installation, 84

instruction set, 15

interpreted execution, 16

interpreter, 16

Kevin Gong,, 8

language engine, 40

left hand side, 34

lefthand-side, 17

LEX, 8

LEXSCAN.C, 13

LHS, 17, 34

linear-bounded automaton,, 16

low-level language, 15

machine language, 15

main(), 34

MAKE, 38

makefile, 38

metacharacter, 19

meta-language, 9

Michael Lesk, 8

move(S, c), 72

multi-line action, 32

multi-line actions, 32

MYSCAN.C, 13

negative character class, 20

NFSM, 70

Noam Chomsky, 16

nondeterministic finite-state machine, 70

non-terminal, 17

NUL character, 75

numeric constants in C, 44

object language, 16, 22

object program, 16

options, 10

output file, 10

output file, 11

parser, 26

parser generator, 26

Pascal, 9, 15

pattern description language, 19

PCLEX, 8, 21, 71

PCYACC, 26

phrase grammar, 16, 68

phrase structure grammar, 68

preprocessor, 16

preprocessor directive, 44

production, 17

program, 15

program generator, 8

program section, 34

programming language, 15

Page 103
push-down automaton, 16, 26

quoted string in C, 45

RE grammar, 18

reduction, 18

regular expression, 18, 69

regular grammar, 16, 18, 69

regular language, 18, 70

regular set, 70

REJECT, 78

rewriting rule, 17

RHS, 17, 34

right hand side, 34

righthand-side, 17

rule section, 21, 22, 24, 74

scanner description file, 10, 21, 22

scanner description language, 22

scanner description program, 22

scanner generator, 21

SDF, 10

SDL, 9

SDL comment, 24

semantic-analysis phase, 17

sentence, 17

skeleton, scanner, 11, 13

source language, 16, 22

source program, 16

stack machine, 26

start condition, 81

start symbol, 17, 18

stdout, 74

Stephen C. Johnson, 8

string specifier, 19

subset construction, 72

symbolic language, 15

table-driven interpreter, 25

target language, 22

terminal, 17

Thompson's construction, 71

token, 17

translator, 8, 15

Turing machine, 16

Unicode Standard, 45

unput(c), 91

user subroutine section, 22, 24, 74

Van Jacobson, 8

Vern Paxson, 8

WC.EXE, 25

WC.L, 23

word, 17

YACC, 8

YY_BUF_SIZE, 91

YY_DECL, 90

YY_INPUT, 91

YY_NULL, 91

yyerrok, 35

yyerror(), 35

yyin, 91

yyleng, 24, 80

yyless, 80

yylex(), 22, 24, 26

yylex.c, 10

yylval, 27, 31, 32

yyout, 91

yyparse(), 26

YYSTYPE, 27

yytext, 10, 12, 32, 80

yywrap(), 90

Page 105

Generating Lexical
Scanners with

PCLEX

PCLEX® is a software product of ABRAXAS SOFTWARE®, Inc.

For more information, contact:

ABRAXAS SOFTWARE, INC.
Post Office Box 19586

Portland, Oregon 97280, USA
Phone: 503-232-0540

Fax: 503-232-0543

Email: support@pcyacc.com

www.pcyacc.com

Copyright © PCLEX 1986-2000 Abraxas Software, Inc.

	TABLE OF CONTENTS
	PREFACE
	I. INTRODUCTION
	1. Typographic Conventions
	2. Examples

	II. OVERVIEW OF PCLEX
	1. History
	2. What PCLEX Does

	III. COMMAND LINE AND OPTIONS
	1. Command Line Format
	1.1 File Name Conventions
	1.2 Command Line Options

	2. Using Command Line Options
	2.1 Override Output C File Conventions (˚c and ˚C)
	2.2 Ask PCLEX for Help (˚h or ˚H)
	2.3 Generate Case-insensitive Scanner (-i or -I)
	2.4 Suppress #line Directives in Scanner (-n or -N)
	2.5 Override Default Scanner Skeleton (˚p or ˚P)
	2.6 Suppress Default Action (˚s or ˚S)
	2.7 Foreign Support for the 8-bit ASCII Character Set (-8)

	IV. BASIC CONCEPTS REVISITED
	1. What is a Programming Language
	2. What is a Programming Language Translator
	3. What are Compilers and Interpreters
	4. Grammar of a Language
	5. Regular Grammar and Regular Language
	6. Regular Expressions
	7. PCLEX Terminology -- A Short Review

	V. GETTING STARTED -- OUR FIRST EXAMPLE
	1. Scanner Description File for Word Count Program
	2. Building the Executable File
	3. Sample Session

	VI. INTEGRATING PCYACC AND PCLEX
	1. PCYACC -- A Parser Generator
	2. Parser and Scanner
	3. C Header File Generated by PCYACC
	4. "yylval" and "YYSTYPE"

	VII. DATES -- A SECOND EXAMPLE
	1. Problem Statement
	2. Developing the Source Language
	3. Separate the Lexical and Syntactic Parts
	4. Write the PCLEX Scanner Description
	5. Write the PCYACC Parser Description
	6. Write the Auxiliary C Code
	7. Build the Program
	8. Build the Program with MAKE

	VIII. ANSI C SYNTAX ANALYZER--A THIRD EXAMPLE
	1. Problem Statement
	2. Developing the Source Language
	3. Separate the Lexical and Syntactic Parts
	4. Write the PCLEX Scanner Description
	5. Write the PCYACC Parser Description
	6. Write the Auxiliary C Code
	7. Build the Program

	IX. PRINCIPLES BEHIND PCLEX
	1. Introduction to Formal Languages
	2. Regular Expressions
	3. Regular Languages
	4. Non deterministic Finite State Machines (NDFSM)
	5. Deterministic Finite State Machines (DFSM)
	6. PCLEX -- From Regular Expressions to DFSM

	X. WRITING PCLEX SYNTAX DESCRIPTIONS
	1. Regular Expressions
	1.1 Operators
	1.2 Character Classes
	1.3 Repetition
	1.4 Arbitrary Character
	1.5 Alternation and Grouping
	1.6 Optional Expressions
	1.7 Context Sensitivity

	2. Actions
	3. Ambiguous Rules
	4. Definitions
	5. Context Sensitivity
	5.1 Actions and User Subroutines
	5.2 Start Conditions
	5.3 Exclusive Start Conditions
	5.4 Special Position Anchors

	APPENDIX A. INSTALLATION
	1. System Requirements
	2. Making Working Copies
	3. Installing PCLEX

	APPENDIX B. ERROR MESSAGES
	APPENDIX C. EXTENDING AND CUSTOMIZING SCANNERS
	1. Macros
	2. Variables
	3. Functions
	4. Scanner Skeleton Format

	APPENDIX D. BIBLIOGRAPHY
	APPENDIX E. GLOSSARY
	APPENDIX F. DIFFERENCES BETWEEN LEX AND PCLEX
	APPENDIX G. DIFFERENCES BETWEEN FLEX AND PCLEX
	INDEX

