TABLE OF CONTENTS
Tableof Contents. . i
PREFACE ..o eseeeeeeeeeeeeeesereeeeeeneeeeeeseeeee 5]
I TNTRODUCTION ..oooo oo oo B|
[L. TypographiC CONVENLIONSccccivuciiiiiiiciiccccci e §]
R EXGMPIES ..o /|
. OVErVIEW OF PCLEX ...t 8|
[l HISIOMY . 8|
P. What PCLEX DOES ...t 8|
I11. Command Line and OPLIONS............cvvvereiiieiieteieieeietee e 10|
fl. Command LINE FOrMaLc.ocvvovieiieieee 10|
(.1 File Name ConVeNntions............ccoueueevereeeieieeieiceieeeec e 10|
[l.2 Command LINE OPLIONS.........cccveoviveiieteieee e 10|
R. Using Command LINE OPLIONS..........cooveveeiiveiietiieicieee 11
.1 Override Output C File Conventions (-c and -C)c.ccccueunnee. 11
R.2 AsK PCLEX for Help (-hor -H) ..o 12|
.3 Generate Case-insensitive Scanner (-1 or -1) ..o, 12|
P.4 Suppress #line Directives in Scanner (-n o -N)........c.cccovvvvvennnnee. 13|
.5 Override Default Scanner Skeleton (-p or -P) ... 13|
.6 Suppress Default ACtion (-SOr -S)cccoeveviiiiciiiicciicic 13|
.7 Foreign Support for the 8-bit ASCII Character Set (-8)................. 13|
IV. Basic CoNCEPLS REVISITED.........cveeieeiieie e 15|
L. What i1s a Programming Language............ccccccooveeviiiiiiiiiiicciccicci 15
P. What Is a Programming Language Translatorccccccovciiiiciicninnnens 15|
B. What are Compilers and INterpreters.......v e 16|
A Grammar Of aLanQUAOE...........cveveveueiietiieteieietee et 16|

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 1

Page 2

b. Regular Grammar and Regular Language...............ccocovvvvniiiciiiiiiciiiniinnns 18|
B. Regular EXPreSSioNnS...........cueoviveuiieieiiieiecee e 19|
[7. PCLEX Terminology -- A SNOI REVIEWocueveveeieeiee 21|
V. Getting Started -- OUR FIRST Example...........ccooovoviieiiieee 23|
[l. Scanner Description File for Word Count Program.................c.cvveuennee... 23|
. Building the Executable FIle.............cooveveviei 25|
B. SAMPIE SESSION.......oovevieeteeetete et 25|
V1. Integrating PCYACC and PCLEX ..o 20|
[l. PCYACC -- A Parser GENEIatorccovevevereeieieeieteieieeeeetee e 26|
P. Parser and SCaNNEYccooveveoiiieiieteee e 20|
B. C Header File Generaied by PCYACC ... 27
B Yy VA and Y Y STYPE oo 27
VIl Dates -- A Second EXAMPIE.........coveveiiieieieieee 29|
[l. Problem Statementc.coeovovereeiiieiieeee 29|
. Developing the Source Language.............ccccviiiciiiiiiiiciiiciciccccce 29|
B. Separate the Lexical and Syntactic Parts.............coovevevevvevcveie 30|
@. Write the PCLEX Scanner DesCription..............coveveveeveveveiereeieicecicee 30|
b. Write the PCY ACC Parser DesCriptioncco.cveveveeieieeeicieeieee 32|
B. Write the AUXITIary C COOEoovvveueeeeteiieiieteee e 35|
[7. BUITA the Program ..ot 37|
B. Build the Program WIth MAKE ..o 38|
VI ANSI C SYNTAX Analyzer--A Third ExXample..........ccccovveiiiiiiciiiiiiccnne, 40|
[l. Problem Statementcccevovereeiiieiieeee 40|
. Developing the Source Language.............ccccoviviciiiiiciciiicicicicccccic 40|
B. Separate the Lexical and Syntactic Parts.............ooovvvevevvevcvei 41|
@. Write the PCLEX Scanner DesCription..............covovevveveieeeieieeieiceiceren 41|
b. Write the PCY ACC Parser DesCriptioncco.cveveveeveieceiceeieee 92|

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 3

B. Write the AuXIliary C COOEoovvveueeeereiieiete 65|

[7. BUITA the Program ..o 60|

IX. Principles BENINA PCLEX..........coovoiiiec e 68|
[L. Introduction to Formal Languagesccoevvvevevereoiereceieeeee 68|

P. Regular EXPreSSIONS.........ccccveviieiiiteieietee e 69|

B. Regular LangUagES............cccvvvciiiiiiiiiiicicc /0|

¢@. Non deterministic Finite State Machines (NDFSM).................ce.. /0|

b. Deterministic Finite State Machines (DFSM)...........ovvvvcvvvvce /1]

b. PCLEX -- From Regular Expressionsto DFSM ... /1]

X. Writing PCLEX Syntax DeSCIPHIONS...........cccocueiiiiiciiiiiiiicccccicccce 74|
[l. Regular EXPreSSIONS..........ccoveiiieuiieieieieteeteee e /5]

(L1 OPEIAIOIS. ...ttt /5|

(1.2 CharaCter ClaSsEScouvuereeiireiiieteieieeieteee e /6]

(L3 REPEUTION ...t /6]

(L4 Arbitrary CharaCter..........ooveveveeiiieieieieeee e /6]

(1.5 Alternation and GroUPING..........c.oceveevereeerereeieteeeieieeieteceieieiereeee i

(1.6 Optional EXPreSSIoNS.........c.coveveveeeeieieieiieece e i

[L.7 CONtEXt SENSITIVITY ..o i

P ACHONS ..ttt /8|

B. AMDIGUOUS RUIES........cooveeietteet e /8|

B DEITNITIONS.......ccieee e 79|

B. CONEXT SENSITIVITY ..o 80|

b.1 Actions and User SUDIOULINES..............cveveveevirerieieieeieeeiee 80|

B.2 Start CONAITIONS.........ccoveriieriiieiee e 81|

b.3 Exclusive Start ConaItionS..........c.c.cveveveeiiieieieieieeeeieee 82|

b.4 Special POSItION ANCNOISccvevieiieieee 83|

APPENdIX A. INSEATAETON ... 84|

PCLEX Users Manual - Printed December 11, 2000

Page 4

[l. System REQUITEMENES.........ccveuiietiiieiiieteee e 84|
R. Making Working COPIES............ccevuiiiiiiiciiiiiciccsiccccccce i 84|
B. INStalling PCLEX ... 84|
Appendix B. Error MESSages............ccccviviiiiiiiiiiiiiccccc 86|
Appendix C. Extending and CuStOMIZING SCANNEYScoccvieiiciiiiiiciiciiicieeeienes 90|
[l MTACIOS. . .cvctee et 90|
R. VaaDIES.......oe 91|
B. FUNCHIONS ...t 91|
. Scanner SKEIEION FOIMALcvevereieiceietee e 92|
Appendix D. BIDITOGrapny ... 93|
AppendiX E. GIOSSArY ..o 95|
Appendix F. Ditferences between LEX and PCLEX ... 98|
Appendix G. Differences between FLEX and PCLEX ... 99|
TTOEX 100

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 5

PREFACE

ABRAXAS PCLEX is a program generator for writing lexical scanners. Lexica
scanners read a stream of characters and divide it into identifiers, keywords, and other
symbols of the target language. PCLEX transates a scanner written in the Scanner
Description Language (SDL) into the host language C. SDL is a high level language
oriented towards string matching. It is a specia purpose language; where the generality
of a programming language is needed, scanner descriptions can be extended with code
sections written in C. SDL allows software developers to concentrate on what the
scanner recognizes instead of getting bogged down in the details of how. It reduces the
work necessary to bring a project to completion. Programs are done sooner with fewer
errors and updates are smplified.

PCLEX issource file compatible with ‘classic AT& T UNIX LEX, uses the faster FLEX
agorithms, and has a command line format similar to PCYACC. It is self-contained and
does not require additional source, object, or library files. PCLEX generated scanners
integrate easily with PCYACC generated parsers. PCLEX used with Abraxas Object
Oriented Toolkit is capable of generating C++, Java, Pascal, Delphi, and Visual Basic.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 6

. INTRODUCTION

This manual describes the ABRAXAS PCLEX features and gives examples of both
standalone text processing programs and lexical scanners. It isboth atutorial on LEX use
and the reference manual for ABRAXAS PCLEX. Itisuseful for al users from novices
to experienced software professionals.

1. Typographic Conventions

PCLEX is largely independent of the characteristics of the hardware it is running on. It
has been adapted for most microcomputer systems and can be easily adapted for others.
Therefore, the presentation aso is largely system independent. Where a specific system
is used to make the discussion concrete, an IBM-PC/XT running MS-DOS isused. In the
appendix, there are tips on system dependent characteristics of PCLEX, including
installation and hardware and software requirements.

Throughout this manual, the following typefaces and syntax conventions are used to aid
clarity:

1). Words or phrases that have important technical meanings or that have specia
interpretations in PCLEX will be underlined when they first appear. Definitions and/or
explanations are given at this time in the normal text style.

Example. PCLEX programs are written in the scanner description language, or SDL,
which isahigh level language for lexical specifications of computer input.

2). When illustrating user-machine interactions, user entered text isin italics. Messages
or prompts from the computer are in normal text. A carriage return is represented as
<CR>.

Example: C>pclex example.|l<CR>

3). Displays, such as diagrams or code listings, will be printed in a typewriter-like font.
They will be indented to help you distinguish them from surrounding text.

Example: The following is a small scanner description file that you will see again later in
the tutorials:

letter [azA-Z]
%%
{letter} + ECHO;

4). Special meaning characters or strings will be bolded to help you distinguish them from
surrounding text.

Example: Regular expression [a-zA-Z] matches any letter.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 7

2. Examples

This manual contains three examples:. Word Count Program (Chapter V), Date
Program (Chapter VII), and ANSI C Syntax Analyzer Program (Chapter VIII). The
source code of these examples are in the PCLEX [DOS-0S/2] Toolkit Disk under \WC,
\DATES, and \ANSIC directories respectably. Each directory is self-contained,
including all sourcefiles,aM AKEFILE for UNIX style MAKE programs, and makefile
files for Microsoft C 7.0s MAKE. The disk contains one more example called
DIGRAPH under \DIGRAPH directory. The purpose of DIGRAPH is explained in
Chapter X, however, the completed exampleis not included in this manual.

PCLEX Users Manual - Printed December 11, 2000

Page 8

II. OVERVIEW OF PCLEX

This chapter gives a brief overview of PCLEX, its origin, history, and evolution, and a
description of its operation at an abstract level.

1. History

PCLEX is an descendent of FLEX (Fast LEX), which is an improved version of LEX.
LEX was first publicly described in an article by Michael Lesk and Eric Schmidt. The
article is one of the most widely cited in computer literature. That version of LEX was
designed, coded, and debugged by Eric Schmidt, based on ideas from Stephen C.
Johnson and Alfred Aho. FLEX was programmed by Vern Paxson and Kevin Gong,
based on ideas developed by Van Jacobson. FLEX added some useful additional
features and significantly speeded up both the generated scanners and scanner generation.
LEX (and more recently FLEX) has been part of the standard language tools provided in
the UNIX operating system environments.

During the past decade or so, numerous software projects, both large and small, have
been developed with LEX. As such, LEX has historically been one of the most valuable
tools available to application and programming language developers. LEX can drastically
reduce the time and complexity normally involved in program and compiler
development. Compiler writing tools like LEX provide developers with a powerful aid to
writing compilers, command interpreters, and other programs with text input.

Because LEX is such a useful tool, many software developers have ported it to their own
systems, or re-implemented it in their own software environments. PCLEX is an
example of an implementation of FLEX on micro computers (IBM PC's and
Macintosh's).

PCLEX is designed and implemented to be upward compatible with LEX and FLEX.
All of the features of LEX are retained in PCLEX, including the improvements from
FLEX. Although PCLEX has an amost identical programming interface with LEX,
there are quite afew differences, which will become clear as we go aong.

2. What PCLEX Does

PCLEX is a computer program. Like most other programs, it takes input, computes
values, and produces output. It isatrandator, i.e., itsinput isin one language (SDL) and
its output is in another (C). Program generators are programs that translate from a very
high level language that is tailored to one area of programming or computing to a lower
level language, usualy a general purpose programming language like C. LEX and
YACC, which is the acronym of "Yet Another Compiler-Compiler”, are program
generators for writing compilers. Compilers are trandators from a programming
language to a very low level language like assembly language or machine language (i.e.,
object code). PCLEX iswritten using PCYACC and itself.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 9

SDL is designed for describing the text input of a program at the lexical level, that is the
basic words and symbols of the input language. SDL is a language for describing
languages, a meta-language. A written language is expressed as a string of characters.
Characters fall into several broad groups: for example, letters, digits, and punctuation.
Identifiers and key or reserved words are built out of characters according to the
convention decided on by the language's designer. For example, identifiers in C can
contain the underscore character ('). FORTRAN and Pascal identifiers are limited to
an initial letter and additional letters and digits.

PCLEX Users Manual - Printed December 11, 2000

Page 10

[11. COMMAND LINE AND OPTIONS

This chapter tells how to run PCLEX, its filename conventions, and the command line
options. PCLEX is command line driven and can be run either from batch procedures or
from the DOS prompt of other programs.

1. Command Line Format

PCLEX retans the flavor of PCYACC's command line interface.
PCLEX [options] <sdf _name>

Where <sdf name> is the name of a scanner description file (SDF) and [options]

represents zero or more command line options. If PCLEX isinvoked with no arguments,
it outputs a short message advising you of the correct command line format.

1.1 File Name Conventions

The <sdf _name> can be any legal MS-DOS filename. For consistency and clarity, it is
recommended that you pick one extension and stick to it. All examples in this manual
use the extension ".L". The default name of the output file is the basename (the filename
without any extensions) plus the extension ".C". For example, if the input file name is
"EXAMPLE.L", the output file name is"EXAMPLE.C". The output file name can be
changed with the "-c" and "-C" options (see the next section).

1.2 Command Line Options

Command line options are used to override default actions or change the file name
conventions. The available options are:

-C: This option overrides the default output C file name. Instead of using the
basename of the input scanner description file plusthe".C" extension,
PCLEX uses"YYLEX.C" asthe output scanner source file name.

-C<cf>: Like -c, this option overrides the default output C file name, but uses the
file name provided by the user in <cf>.

-h: Show a help screen.
-i: Build a case-insensitive scanner. The case of lettersin the patternsis

ignored and patterns are matched regardless of case. The matched text in
"yytext", theinternal defined character pointer pointing to the matched

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 11
input token, isnot atered, the original case of the scanner input is
preserved.
-n: Suppress #line directives in the output scanner source file. Thisoptionis
useful if you are trying to use a source code debugger. In normal operation
the output scanner source file uses #line to make the reference to the
original scanner description file, this normally causes source code
debuggers like CodeView to generate strange results.

-p<pf>: Usethe user provided scanner skeleton in <pf> instead of the default (see
Appendix C). Thisoption can be used to generate C++ scanners.

-S. This option suppresses the default rule (that unmatched input be written to

"stdout"). With thisoption, if the scanner finds input that is not matched
by any rules, the scanner program quits with a"pclex scanner jammed"

message.

Only the "-c" and "-C" options are case-sensitive. The rest are the same for both upper
and lower case. For example, "pclex -h" and "pclex -H" are equivalent.

2. Using Command Line Options

This section shows how to use the command line options. The following example,
"EXAMPLE.L", is used throughout this section:

letter [azA-Z]

%%
{letter} + ECHO;

With no options, PCLEX writes the C output fileto "EXAMPLE.C".

2.1 Override Output C File Conventions (-c and -C)

The "-¢" and "-C" options override the output C filename convention of PCLEX. With
the "-c" option, the output iswrittento "YYLEX.C". For example:

C>pclex -c examplel

creates"YYLEX.C" in your current directory.

The"-C" option lets you specify the name of the output file. For example:
C>pclex -Canything.c example.l

creates"ANYTHING.C" in the current directory.

PCLEX Users Manual - Printed December 11, 2000

Page 12

2.2 Ask PCLEX for Help (-h or -H)

The two help options, "-h" and "-H", do the same thing. They ask PCLEX to show a
help message on the screen. This display is helpful when you are first learning how to
use PCLEX and later on it is ahelpful reminder for infrequently used options.

C>pclex -h
shows the following message:

Abraxas Software (R) PCLEX Version - 8.01 [NT].
Copyright (C) Abraxas Software, Inc. 1986-98, all rights reserved

Usage: pclex options scanner.|
Available options:

-c: usefile"yylex.c" for C output
-Cf: usefilef for C output

-h : display this help message
-l : caseinsensitive
-n : do not generate '#line' directive in output
-pf: use skeleton f as scanner driver
-S: sUppress scanner output
and,
C>pclex -h examplel

shows the help message and generates the scanner source file EXAMPLE.C.

2.3 Gener ate Case-insensitive Scanner (-i or -I)
Normally, PCLEX generates scanner that treat upper and lower case letters as distinct.
For example, the pattern "abc" will not match "ABC". This option tells PCLEX to build
a case-insengitive scanner. The case of letters in PCLEX input patterns and the scanner
will be ignored and the rules will be matched regardiess of case. The scanner simply
converts al lower case letters in the .L scanner description file into upper case. The
matched text in "yytext" will have case preserved.
The following statement

letter [azA-Z]
can be rewritten as

letter [aZ]
or

letter [A-Z]

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 13

with the same scanner behavior if one uses the command line;

C>pclex -i example.l

2.4 Suppress #line Directivesin Scanner (-n or -N)

Normally, #line directives are put in the .C output scanner source file to provide a way of
correlating line numbers in compiler error messages with the original line in the input
scanner definition file. This option causes the #line directives to be omitted. Some
source level debuggers handle #line directives incorrectly.

2.5 Override Default Scanner Skeleton (-p or -P)

Normally, the generated scanner is built around the default scanner skeleton. The C
source code for the default skeleton of a scanner program is internal to PCLEX. The
"-p" option allows a custom scanner skeleton to be used. The form of the scanner
skeleton is explained in Appendix C. The default skeleton C source file"LEXSCAN.C"
used to built the interna skeleton is in the \PCLEX directory, available for
customization. For example:

C>pclex example.l
and

C>pclex -plexscan.c example.l
are equivalent. And,

C>pclex -pmyscan.c example.l

will use MY SCAN.C to produce EXAMPLE.C.

2.6 Suppress Default Action (-sor -S)

Each piece of the scanner's input text that is matched by a pattern specified in the scanner
description file has an action associated with it. For scanner input text not matched by
any pattern, the default action is taken. Normally, the default action is to copy the
unmatched text to the output. The "-s' and "-S" options suppress the default action and
treat unmatched input text as an error: the scanner outputs the message "pclex scanner
jammed" on the standard error device (usually the screen) and exits.

2.7 Foreign Support for the 8-bit ASCII Character Set (-8)

By default PCLEX generates 8-bit character scanner which reads input files written in
symbolsin the 8-bit ASCII character set. With the -8 option, PCLEX will generate 7-bit
character scanner which can read input files written in symbols in the 7-bit ASCII
character set. If you define hi-bit set characters in your Lexical Definition File (.L), you

PCLEX Users Manual - Printed December 11, 2000

Page 14

must define the rules with octal characters, i.e.,characters above octal 177(8) must be
defined as\ 0200 [200(8)].

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 15

IV.BASIC CONCEPTSREVISITED

This chapter introduces the basic concepts related to PCLEX such as computer
programming languages, translators, interpreters compilers, lexical analyzers, grammar of
languages, and regular expressions. Basic technical terms used in later chapters are aso
explained. Some terms are listed to prepare for amore formal discussion of those subjects
in later chapters

1. What isa Programming L anguage

Computers do an overwhelming and constantly expanding variety of tasks. Nevertheless,
computers are not intelligent. They must be told how to do each task with a set of step by
step instructions, called programs. To do these seeming miracles, someone has to work
out the sequence of steps to accomplish the task in minute detail and present this step by
step program to the computer in a computer language. A programming language is an
artificial language used to write the detailed instructions necessary for the performance of
any task by the computer. Programs of any length are the basic forms in which these
instructions are presented to the computer for execution.

There are two broad classes of programming languages: low level languages like machine
language and assembly language that are machine instruction oriented, and high level
languages like C, Basic, and Pascal that are largely machine independent and are oriented
towards arithmetic and logical operations. Machine language is directly executable by the
computer. Assembly language maps directly into machine language and translation is fast

and easy.

2. What isa Programming Language Trandator

A computer can only directly understand programs written in its own language, called
machine language, one kind of low level language. Machine language programs are
written in binary digits. Machine languages are very primitive. Writing programs in
machine language is tedious and very error-prone. Soon after the invention of the
computer, symbolic languages were developed to shift some of the burden of
programming to the computer itself. Instead of writing the program in binary digits,
meaningful names (mnemonics) were given to each of the machine's instructions and the
program can then be written in an easier to read symbolic form. A transation then has to
be done to trandlate the programs written in symbolic languages to the programs written
in machine languages. At first the trandlation was done by hand. Later a program, called
trandator, was written in machine language to translate symbolic language programs to
machine language programs. After the first such translator was written, programming no
longer needed to be done in machine language. The first symbolic languages were till
very oriented toward the machine's own instruction set (the computer's repertoire of basic
actions). They are called assembly languages, another kind of low level language, and the
trandator is called an assembler. Conversely, trandators that translate machine language
programs into assembly language programs are called disassemblers.

PCLEX Users Manual - Printed December 11, 2000

Page 16

3. What are Compilersand Interpreters

Trandation to machine language is not limited to just low-level languages. A high-level
language describes a program in terms that are better matched to the task at hand and
human thought processes. Programs written in high level languages have two different
modes of execution: interpreted execution and compiled execution.

Compilers are trandators between high-level languages and low-level languages. A
compiler trand ates the source program from a high level language to an object program in
a low level language (either assembly language or machine language). The language in
which source programs are written is referred to as the source language, and the language
in which object programs are composed is referred to as the object language. A
preprocessor translates from a high level language to a similar language. Usualy, the
preprocessor's object language is a subset of its source language. Compiled execution
mode is divided into two phases. a compilation phase and an execution phase. During
compilation, a compiler first recognizes the input source program written in the source
language then composes an equivalent object program. written in the object language. In
the execution phase, the object program (in machine language) is executed.

Programs can be written that carry out the source language program actions directly
instead of first transating them to machine language. Such a program is caled an
interpreter. Interpreters skip the compilation step. The computer runs the interpreter
machine language program and the interpreter runs the source language program. This
extra layer of program slows down running the source program. Interpreters remove the
compile step from the usua edit-compile-debug cycle of development. In interpreted
execution mode, program statements are decoded and executed one at atime. Each step
includes trandlation of a statement followed the appropriate machine actions dictated by
the statement.

4. Grammar of a Language

A programming language can be defined in a number of ways, some formal and rigorous,
others casual and illustrative. A very small language may have a finite number of
programs and the language could be defined by listing them all. A more general method
is to describe the grammar of the language, the set of rules that outline what the valid
structures and constructs are and how they are combined. Formal languages, languages
defined with mathematical rigor, provide a solution to the problem of describing infinite
languages in a concise manner, using only a finite number of symbols. The rules for
precise definition of computer languages make up what is called formal grammars.

According to Noam Chomsky, who is well known to computer science community for
his contributions to the study of formal languages, there are four classes of grammar to
generate languages in four levels. The grammars are listed according to increasing
description power and complexity as following: regular grammars, context-free
grammars, context-sensitive grammars and phrase grammars. Subsequent research had
identified four corresponding abstract machine types, which can recognize those strings
written in the languages generated by their respective grammars. Corresponding to the
grammars listed above, these abstract machines or automata are: finite-state automaton,
push-down automaton, linear-bounded automaton, and Turing machine.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 17

Regular grammars are the most simple kind of grammars, and can be used for a wide
variety of applications. Although they are a bit too ssimple to describe practical
programming languages, they are good for defining lexical rules for compilers. On the
other end of the spectrum are the so called phrase grammars, which are most complicated
and powerful. Phrase grammars can describe any task that can be done by a computer.

Context-free and context-sensitive grammars are most often used to effectively specify
programming languages in a mechanica manner. For most applications, context-
sensitive grammars are appropriate since most programming languages of practical use
are context-sensitive. However, when considering computational complexities, context-
free grammars are so much easier to handle. They can be most efficiently implemented
as mechanical procedures. Therefore, they are used amost exclusively by computer
science professionals. Most of the rea compilers are written first as context-free
grammars which are then mechanically translated into codes.

At the first look it seems that the choice of context-free over context-sensitive a big
compromise, since most of the practical programming languages are context-sensitive.
However, it is possible to single out the context-sensitive components of programming
languages and deal with them separately from pure syntax processing. The syntax part of
any language is aways context-free. A common practice is to shift the duty of
processing context-sensitive components to a so called semantic-analysis phase.

A grammar defines a language by explaining which sentences may be formed. It consists
of four components, they are the terminals, the non-terminals, the rewriting rules, and the

start symbol

Terminals, also known as tokens, are the basic building elements of programs. They are
constant symbols because each token represents itself. In a programming language,
terminal symbols are used to write programs. Using C language as an example, key
words such as if, then, else, which, break, continue, return etc., constants such as 10,
2.5, 'y", "text-string" etc., and identifiers such as line_count, line_buffer etc. are all
terminal symbols. The terminal symbols are not further explained in the grammar; they
are the alphabet and words in which the sentences of the language, which the grammar
describes, are written. An aphabet is a finite set of symbols;, a word is a sequence of
aphabetic symbols;, a sentence is a sequence of words comprising a language; and a
language is a set of words formed from the al phabet.

Non terminals are syntactic variables that can take on different values of strings made up
of non terminals and terminals. The presence of non terminals in a grammar usually
corresponds to important linguistic constructs of the language defined by the grammar. In
a typical programming language such as C, data-declaration, function-declaration,
statement and expression are normally recognized as non terminals.

Productions, or rewriting rules or grammar rules, specify the manner in which the
terminals and non terminals can be combined to form strings. For each non terminal, a
production must exist, and any one of the formulations from this production can be
substituted for the non terminal. A production rule of a grammar consists of a left-hand-
side (LHS) and aright-hand-side (RHS), separated by an arrow:

Uu-->V

PCLEX Users Manual - Printed December 11, 2000

Page 18

where both U and V are strings of grammar symbols. Various types of grammars are
made by imposing restrictionson U and V. In particular, agrammar rule in a context-free
grammar has the following form:

X-->X1 X2 .. Xn

where the left-hand-side of the grammar rule, X, has to be a single, unique non terminal
symbol, and any of the components of the right-hand-side of the grammar rule, Xj , can
be either a terminal or a non terminal. It could even be the left-hand-side, X. The
meaning of such a production rule in a context-free grammar is that wherever X occurs, it
can be rewritten by the sequence of the grammar symbols

X1 X2 ... Xn
in that order. Also, whenever the sequence
X1 X2 ... Xn

occurs, it can be reduced to X. The process of replacing the LHS of a production by its
RHS is called a (one step) derivation. The inverse of a derivation, the process of
replacing the RHS of a grammar rule by its LHS, is called a reduction. The replacement
of a sequence of grammar symbols by a non terminal symbol, or vice versa, using
grammar rules can be done without consulting the surrounding text of grammar symbols.
This is why the phrase context-free is used. Again using C language as an example
(taken from the C programming language reference manual):

statement --> compound-statement
statement --> expression ;'

This example states that a C statement can either be a compound statement or a
semicolon terminated expression.

The start symbol of a grammar is a distinguished non terminal symbol that normally
signifies the highest level syntax concept of the language being defined. This would be
program in the case of programming languages, or sentence in the case of natura
languages.

5. Regular Grammar and Regular Language

Regular grammars (RE grammars), also called finite-state grammars (FS grammars), are
used to defined regular languages describing the structure of text on the character level.
That is, the termina symbols in aregular language are single characters. Hence, aright-
hand side in a regular grammar contains at most one non-termina and regular grammars
tent to be quite big in size depending on the regular language to be defined. However,
al regular grammars can be reduced considerably in size by using the regular expression
notations. In the other hand, a regular expression can be converted into a regular
grammar by expanding it according to the meaning of the operators. Therefore, regular
languages are often described by regular expressions rather than by regular grammars.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 19

6. Regular Expressions

Regular expressions are string specifiers or pattern descriptions using a pattern
description language, which is avery convenient specification language for the finite state
automaton actually constructed. The characters set used in the language is a subset of the
ASCII characters set. Pattern descriptions are specified by giving special meaning to
certain characters called metacharacters. The following rules are used by PCLEX to
form aregular expressions. The rules are the same as the rules used by UNIX LEX and
FLEX.

1 A single character that is not a metacharacter is a regular expression matching
the single character. Thus, letters, digits, and some special characters represent
themselves.

For example, regular expression A matches the single character A.

2. Two regular expressions concatenated form a regular expression matching the
pattern that a match of the first expression is immediately followed by a match of the
second.

For example, regular expression P and regular expression C form aregular expression PC
which matches the string PC.

3. Two regular expressions separated by a vertical bar ('|') form a regular
expression matches either the preceding expression or the following regular expression.

For example, regular expresson RED|GREEN|BL UE matches any of the three words..
4. Two regular expressions separated by a slash (/') form aregular expression
matches the preceding expression but only if followed by the following regular
expression.

For example, regular expresson PC/LEX matches the substring PC in the string
PCLEX. It would not match string PC or PCYACC.

5. A series of regular expressions can be grouped together in a pair of
parentheses ('(* and ')") form anew regular expression.

For example, regular expression (Lind|Brian)a matches both Linda, and Briana.

6. A period ('.") matches any single character except the C new line metacharacter
(\n").

For example, regular expression M. matchesstringsME and MY.

7. An up arrow circumflex accent ('~') as the first character of a regular
expression matches the beginning of aline.

For example, regular expression "M E matches the string ME only if it is the first two
characters on the line.

PCLEX Users Manual - Printed December 11, 2000

Page 20

8. A dollar sign ('$) asthe last character of a regular expression matches the
end of aline; but not the new line character itself.

For example, regular expression ME$ matches the string ME only if it is the last two
characterson theline.

9. A pair of squarebrackets ('[' and ']') enclosing a sequence of charactersforms
a regular expression called a character class, which matches any of the characters
enclosed in the brackets. Metacharacter [' marks the start of a character class and
metacharacter '|' marks the end of the character class.

Inside a character class only metacharacters ', ', -, "', \', {', and '}’ have specia
meaning. Other metacharacters lose their special meaning inside a character class except
C escape characters starting with '\'. Use\{, \}, \], and so forth to put these charactersinto
acharacter class.

For Example, regular expression [0123456789] matches any single decimal digit; and,
regular expression [.$] matches a period or a dollar sign.

10. An up arrow circumflex accent ('~') as the first character of a character
class makes a negative character class, which matches any character except the ones
within the brackets.

For example, regular expression [*0123456789] matches any character except a digit
character. And regular expression [*0123456789] matches any digit character or an
circumflex accent.

11. A dash or hyphen ('-') inside a character class or a negative character class
indicates a character range. A '-' as the first character after the '[' matches the
character "' itself. This provides another why to put the character into the character class.

For example, regular expression [0-9] matches any single decimal digit; it means the
same thing as regular expression [0123456789]. Regular expression [-*] matches a dash
Or an up arrow.

12. A quotation mark (""") regardlessinside a character class or not takes away
special meaning of characters up to next quotation marks. Everything within the quotation
marks is interpreted literally; metacharacters other than C character escapes lose their
meaning within the quotation marks.

For example, regular expression "1.5/3.0" matches the string 1.5/3.0.

13. A backdash ('\') regardlessinside a character class or not takes away specid
meaning of next character. The metacharacter is used to escape metacharacters, and as
part of the usual C character escapes.

For example, regular expression [\t\n\] matches awhitespace character.

14. A pair of curly braces ('{' and '}') regardless within a character classor not
marks the start and the end of a macro name.

For example,

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 21

letter [azA-Z]
%%
{letter} ECHO;

In the example we first define a macro name letter which represents aregular expression
[a-zA-Z] in the definition section of the scanner description file. Later, intherule
section we refer to the regular expression by calling its macro name using {letter}.

15. Numbersin a pair of braces, {numberl, number2}, form an operator which
indicates how many times the previous pattern is allowed to match.

For example, regular expression [0-9]{ 1,3} matches numbers 0 to 999.
16. A regular expression followed by an asterisk ('*') matches that expression

repeated zero or more times. The metacharacter ™*' is a closure operator. A closure
operation has higher precedence than concatenation.

For example, regular expression [0-9][0-9]* matches numbers consist of one or more
digits.

17. A regular expression followed by a plus ('+'), a closure operator, matches that
expression repeated one or more times.

For example, regular expression [0-9]+ matches numbers consist of one or more digits.

18. A regular expression followed by a question mark ('?'), a closure operator,
matches that expression repeated zero or one times.

For example, regular expression Brian?a matches Briana and Brianna.

The precedence of operators in a regular expression is listed from highest to lowest as
following:

oper ator description

0 parentheses grouping
character class
* +2{} times the pattern is alow to match
ee concatenation
| either pattern
NS beginning and end of line

7. PCLEX Terminology -- A Short Review

PCLEX is a scanner generator, a program that assists in writing lexical scanners. The
scanner is a finite-state automaton or finite state machine (FSM). PCLEX takes an
input scanner description file comprised of regular expressions and associated C codes
(actions), then builds a recognizer program which executes the C code when a certain

PCLEX Users Manual - Printed December 11, 2000

Page 22

string is recognized. PCLEX builds the lexica scanner by translating the target
language's lexical syntax description in regular expressions into a C program that
recognizes the symbols or tokens of the target language. The source language of PCLEX
is the scanner description language (SDL). The object language of PCLEX is the
programming language C. Source programs written in SDL are caled scanner
description programs (SDP's). Files of SDP are called scanner description files (SDF's).
The function of PCLEX is to translate a GDF into a C file that defines a function. By
convention, the name of the function is yylex(). A target language in a lexical analysis
process is the language described by the scanner description program.

A SDF is made up of three sections, a definition section, a rule section, and a user
subroutine section, in that order. Any or all of the three sections can be empty. If the
user subroutine section is empty, the second "% %" delimiter can be omitted. The first
"% %" delimiter can not be omitted.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 23

V.GETTING STARTED -- OUR FIRST EXAMPLE

This chapter gives you an idea of how to use PCLEX with a standalone scanner program.
Many simple text processing and statistics gathering programs can be quickly written this
way with the aid of PCLEX. It is assumed that you are already familiar with MS-DOS
and the C programming language. You need an MS-DOS personal computer with
ABRAXAS PCLEX and a C compiler installed to build and run this example. A
programming editor is helpful for making program modifications and experiments.

The basics of the program development process is similar for al standalone PCLEX
programs. This chapter gives an overview of that process. The example program used in
this chapter counts the bytes, words, and lines in a text file. How to build and run the
program will be shown and explained. Later chapters show more complicated examples
with more involved build procedures.

1. Scanner Description Filefor Word Count Program

The following is the listing of the SDF for the word count program, WC.L. For
reference, line numbers are added to the listing.

001: /*

002: * WC.L - sinple standal one PCLEX applicati on.
003: */

004:

005: %

006: long nchar = 0O; [* # of characters */
007: long nword = O; [* # of words */
008: long nline = 0; [* # of lines */
009: %

010:

011: %»0

012:

013: \n nchar += 2; ++nl i ne;

014:

015: [~ \t\n]+ ++nwor d; nchar += yyl eng;
01l16:

017: . ++nchar ;

018:

019: %%

020:

021: main()

022:

023: yyl ex();

024: printf("%\t%\t%\n", nchar, nword, nline);
025: exit(0);

026: }

PCLEX Users Manual - Printed December 11, 2000

Page 24

This example, though small, exhibits the typical structure of a PCLEX scanner
description. Lines 001 through 010 form the definition section, where needed header
files are included, global variables declared, and names defined. Lines 012 through 018
make up the rule section where the input patterns to match and their corresponding
actions are defined. Lines 020 through 026 are the user subroutine section with the
necessary support functions written in C. As illustrated by this example, a scanner
description file is made up of three section: a definition section, arule section, and a user
subroutine section. Any or all of the three sections can be empty.

Lines 001 through 003 are a comment. SDL comments look the same as C comments
and are passed through to the output file intact. The rules for SDL comment placement
arenot quitethesameasin C. They are explained in detail in Chapter X, section 5.3.

The symbol pairs, "% {" and "%}", on lines 005 and 009 are delimiters used in the
definition section to bracket C code, such as preprocessor directives, global type and
structure definitions, and global variable declarations. In this example, there are three
variable declarations. PCLEX does not look at the code inside these delimiters, it is
passed through to the output scanner source file intact. The code is placed on the top of
the output file so that other parts of the scanner can refer to the data definitions contained
init.

Line 011 is the delimiter ("% %"), on a line by itself, separating the definition section
from the rule section.

Line 013 says: when an end of line is reached (\n' is shorthand for new line), add two to
the character counter ("nchar") and add one to the line counter ("nline"). The end of line
in MS-DOS text files is marked by two characters, a carriage return and a line feed
character. The patternin aruleis everything before the first whitespace (blanks and tabs),
in this case the'\' and 'n' characters. Everything from the whitespace to the end of the line
isthe action part of the rule. Each action isa section of C code executed when its pattern
is recognized in the scanner input. Actions can be empty (anull statement in C language,
called an empty action.) Rules normally arejust onelinelong. How to extend the action
over several linesisexplained in alater chapter (Chapter VII, section 4).

Line 015 says. when a string of non-whitespace characters are found, increment the word
counter ("nword") and add the length of the matched text ("yyleng") to the character
counter. The pattern matches one or more (‘+' operator) occurrences of the class of
characters (square brackets, '[' and "', enclose character classes) that includes everything
except (an initial "' operator complements or reverses the contents of a character class) a
space, atab (\t' is shorthand for tabs), and ends of lines.

Line 017 is the fina rule in the rule section and says: for any character not otherwise
matched ('." operator matches any single character), increment the character counter.
The blank lines between rules are for readability, they are not required.

The second "% %" delimiter on line 019 separates the rule section from the user
subroutine section. Everything in the user subroutine section is passed intact to the
output file of PCLEX. In this example, the main function calls "yylex()", the scanner
function generated by PCL EX, prints the character, word, and line counts, and exits. The
following discussion will help you understand how to combine what PCLEX produces
with the user subroutines written by the programmer to make a complete C program.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 25

PCLEX generates C code for a function, "yylex()", and data tables that together read the
input, divide it into matches of the patterns, and execute the corresponding actions.
Technically, the "yylex()" function is a table-driven interpreter that simulates a
Deterministic Finite State Machine (DFSM). DFSM are discussed in more detail in
Chapter 1 X. The rest of the program must include a "main()" function, do any program
setup and cleanup, and do any additional processing needed.

2. Building the Executable File

To invoke PCLEX on the scanner description file WC.L, issue the following command:
C>pclexwell

The result of this operation is a C program. A file with the name WC.C will be created

in the current directory, which is a C program for the Word Count program. To build

the executable version of WC, invoke the C compiler as follows (the example assumes

the Microsoft C compilers):

C>cl we.c

3. Sample Session

After the executable version of WC is built successfully (in our example, we have a
WC.EXE in the current directory), we can use it to check the size of WC.L. The
following is a sample session of WC at work:

C>wc <wec.l
398 64 26

This example, though ssimple, contains aimost all of the parts of building a program with
PCLEX.

Note, if you take WC.EXE and type
C>wc < wc.exe

This will lock up the machine or scanner because the executable file is made up by 8-bit
ASCII characters. To build an eight bit scanner use the command

C>pclex -8 we.l > we.c
then type

C>cl we.c
now type

C>wc < we.exe

and note the machine will not jam.

PCLEX Users Manual - Printed December 11, 2000

Page 26

VI.INTEGRATING PCYACC AND PCLEX

1. PCYACC -- A Parser Generator

PCYACC is a compiler-writer, or a parser generator, a program that assists in writing
compilers. A parser is often the front end portion of a compiler. It is a push-down
automaton, or a stack machine, consisting of a stack holding current states, a transition
matrix determining next state according to the current state and next input symbol, a
table of user defined actions executed at certain points in the grammar analyzing, and
finally an inter preter managing the execution.

PCYACC trandates a context-free grammar into a C function that recognizes programs
written in the target language defined by the grammar. The source language of PCYACC
is the grammar description language (GDL). The object language of PCYACC isthe C
programming language. Source programs written in GDL are called grammar description
programs (GDP) which describes the grammar syntax of the target language.

2. Parser and Scanner

The function of PCYACC isto translate a GDF into a C file that defines a function. By
convention, the name of the function is yyparse(); which calls repeatedly on a lexical
anayzer function yylex() to read input and returns zero or one indicating whether a
sentence was presented in the target language according to the grammar syntax of the
language.

A PCYACC generated parser cals the PCLEX generated scanner "yylex()" for each
token it parses. The parser passes no arguments to "yylex()" and expects an integer
return value. The return value is either a character widened to an integer or one of the
%token values #defined in the C header file generated by PCY ACC (see next section).
Note that while PCYACC alows periods in %token names, the C compiler will not.
Periods are okay in non-terminal names since the C compiler will never see them.
A typical scanner action ends with either

return yytext[0]
or

return TOKEN;
where "yytext" is ainternal defined character pointer pointing to the matched input text,
and "TOKEN" , representing a specific input stream, is #defined in the C header file
generated by PCYACC.

Further examples of PCLEX/PCY ACC interaction are the DATES and ANSI C Syntax
Analyzer programs explained in the next section.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 27

3. C Header File Generated by PCYACC

Using command line option -d or -D, PCYACC will generated a header file as well as
the C parser file. The header fileis used primarily by the lexical anaysis routine yylex().
PCYACC will enumerates al of the tokens declared in the grammar, and these
enumerated val ues are used as messages between yypar se() and yylex().

The header file declares and defines all the global variables and macros shared by the
syntax parser and the lexical scanner. Usudly it will define the parser stack type
YYSTYPE, declare the intercommunication variable yylval, and define the terminal
symbols for the scanner and the parser. The definitions generated by PCYACC are used
globally at parse time unless your yylex() routineisloca to the grammar.

The -d switch tells PCYACC to produce the header file using the default file name
yytab.h. The -D<hf> switch produces the header file using "hf" asthe name. If no <hf>
is provided, PCYACC will use the basename of the grammar description file with an
extension ".h". For more information regarding to PCY ACC command line options, see
PCYACC Users Manual.

4."yylval" and"YYSTYPE"

The conventional way to pass additional information from the scanner actions to the
parser actions is through the variable "yylval". Itstypeis"YYSTYPE", the same as the
semantic stack maintained by the parser and accessed through the "$$", "$1", "$2", etc.
variables in the parser actions. For more information regarding to PCYACC symbols,
"B, "1, " 2", etc. see PCYACC Users Manual.

The default type of PCYACC stack isanint. It can be changed by the user in two ways.
Thefirst and easiest isto use PCY ACC keyword % union. For example, to use the value
stack to handle three kinds of values, integer numbers, floating point numbers, and
identifiers, the following union definition can be added to the declaration section of the
grammar description file:

%uni on {
i nt i
float r;
char *s;

}

% oken DDD

%0

The second way to accomplish the same thing is to define the union type directly in C
syntax, and enclose the definition using the delimiters %{ and %}, as shown below:

%

t ypedef union {
i nt [
float r;
char *s;

} YYSTYPE;

PCLEX Users Manual - Printed December 11, 2000

Page 28
%
% oken DDD

PCYACC will trandate the first declaration style into the second declaration style, which
actually appears at the very begin of the generated C code parser:

t ypedef wunion {

i nt i

float r;

char *s;
} YYSTYPE;

extern YYSTYPE yyl val ;
#defi ne DDD 257

Note, PCYACC typedefs the parser stack type, YYSTYPE, according to the union
definition in the declaration section of the grammar description file, declares the
intercommunication variable yyval to be of type YYSTYPE, and enumerates the token,
DDD, declared in the grammar description file.

With the -d or -D switch, PCYACC will make a copy of this code section from the
generated C code parser to the header file specified by the switch (see last section).

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 29

VII. DATES-- A SECOND EXAMPLE

This chapter is a continuation of Chapter V. It will help acquaint you with the procedure
and style of program development using PCLEX and PCYACC together and provide
you with some guidelines for project development.

A general guideline for project development using PCLEX and PCYACC is aseven step
process, as follows:

1) definethe problem

2) develop alanguage to express the problem and/or solution
3) separate the source language into lexical and syntactic parts
4) writethe PCLEX scanner description

5) writethe PCY ACC parser description

6) writethe auxiliary C code

7) build the executable program

The DATES program is a simple example of PCLEX and PCY ACC working together.
The advanced error processing from PCYACC is included in this example. The sources
arein \DATES directory on the EXAMPLES disk.

1. Problem Statement

The problem is recognizing dates after January 1, 0000, and converting them to an
internal form. There are a variety of calendars in use throughout the world. To avoid
complicating the problem too much, only the Gregorian Calendar will be handled. The
Gregorian Calendar (named after Pope Gregory, who oversaw its development) is
currently in use in North America, South America, and Europe. To alow future
extensions to other calendars, the number of days since January 1, 0000, is used for the
internal form.

2. Developing the Sour ce Language

While everyone who uses the Gregorian Calendar agrees on the number of months and
the number of days in each month, there is not agreement on how to write a date. The
U.S. writes dates with the month first, then the day and year. Europe writes the day first,
then the month and year. When the month is spelled out, the spelling differs from
language to language, though they are often recognizable. For this program, only English
months are recognized, though both orders are handled properly.

In the U.S,, the short form is punctuated with slashes, for example: 12/31/93, the last day
of 1993. The long form is the month, the day, a comma, and the year, for example:
December 31, 1993. In the short form, the century is ailmost always left off the year.
Two digit years will be assumed to be in this century (this convention makes short form
clumsy for dates in the first century B.C). The year will always be assumed to be
complete in the long form.

PCLEX Users Manual - Printed December 11, 2000

Page 30

In Europe, the short form is punctuated by periods, for example, 31.12.93 is the last day
of 1993. The same date in European long form is: 31 December 1993.

In both forms, the months can be abbreviated to the first three letters. The month is
always capitalized. This restricted set of date conventions allows one program to handle
dates without explicitly specifying the form used. There is sufficient difference between
the forms that a computer program can tell which is used.

3. Separatethe Lexical and Syntactic Parts

In isolation, the line between lexical and syntax analysis can be drawn in a number of
places. For consistency with the usual practice in compilers, the scanner will handle
whitespace, full numbers (not just digits), punctuation, and spelled-out months. The
parser will handle form and correctness recognition. Auxiliary C code will handle two
kinds of things. The first task of the auxiliary C code is handling date correctness
checking, month lookup, ASCII to binary conversion, and output. This work is tightly
associated with the parser. The second task of the auxiliary C code is some how
independent from the parser. It handles the rea calculation and is therefore more project
dependent. Usually the auxiliary C code that strongly associated with the parser is put
into the last section of the grammar description file. And the C functions that are parser
independent are coded in other files.

4. Writethe PCLEX Scanner Description

In the first example shown in Chapter V, the scanner description contained the entire
program. In this example, the SDF contains just part of the program. The parser with
some auxiliary C functionsis in the grammar description file (GDF). And the auxiliary
C function doing calculation isin another C file.

001: /*

002: * LEX. L - lexical analyzer for DATES program
003: */

004: %

005: #incl ude <stdlib. h> [* atoi() */
006: #incl ude "dates. h" /[* token definitions */
007: extern int yylval; [* defined by PCYACC */
008: int yylineno; /* inputed |ine counter */
009: #define MON(x) { yylval = x; return MONTH, }
010: %

011:

012: %%

013:

014: Jan("."|uary)? MON(1) ; /[* nonths */
015: Feb("."|ruary)? MON(2) ;

016: Mar("."|ch)? MON(3) ;

017: Apr("."[il)? MON(4) ;

018: WMy MON(5) ;

019: Jun("."|e)? MON(6) ;

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 31

020: Jul ("."|y)? MON(7) ;

021: Aug("."|ust)? MON(8) ;

022: Sep("."|tenber)? MON(9) ;

023: Cct("."| ober)? MON(10) ;

024: Nov("."|enber)? MON(11) ;

025: Dec("."|enber)? MON(12) ;

026:

027: [0-9]+ {

028: yylval = atoi (yytext);
029: return NUMBER

030: }

031: [\t] ; [* discard whitespace */
032: \n {

033: ++yyl i neno;

034: return '\n';

035: }

036: . return yytext[O0];

Lines 005 and 006 include the necessary header files: "stdlib.h" for the prototype of
"atoi()", and "dates.h" for the #defines for the token labels, "MONTH" and
"NUMBER". Header file "dates.n" can be produced by invoking PCYACC with -d
switch.

Line 007 is for "yylval", a variable used to pass additional information to the parser.
The variable is for communication between the syntax parser and the lexical analyzer. It
is predefined as a global variable by PCYACC in yyparse(). Variable yylval has the
same type as the PCYACC stack, YYSTYPE. Line 007 listed here is for better
explanation. It could be omitted since in the header file generated by PCYACC, yylval
is always declared to be:

extern YYSTYPE yylval;

right after the definition of YYSTYPE. In our example only integer value stack is used.
Therefore, we don't need to redefine the parser stack type YY STEPE.

Line 008 defines the variable yylineno used to count the lines scanned of the input.

Line 009 defines a macro used in the action for all the months. The definition saves
typing (nice!) and ensures that all months behave the same (important!).

The"% %" delimiter standing along on line 012 separates the definition section from the
rule section.

Lines 014 through 025 handle the months and their abbreviations, both with and without
a period. The period has a specia meaning in patterns and must be enclosed in double
guotes to match itself. The question mark after the right parenthesis indicates that the
part of the pattern inside the parentheses is optional. The parentheses enclose two
alternatives separated by the vertical bar ('|'). The pattern "Jan("." Juary)?" is equivaent
to the three patterns: "Jan”, "Jan" ."", and "January".

PCLEX Users Manual - Printed December 11, 2000

Page 32

The pattern on line 027 matches integers. The action spans lines 027 through 030.
Multi-line actions are enclosed in braces to form a C compound statement. The current
matched text is pointed by the PCLEX predefined character pointer "yytext". The binary
equivalent is assigned to "yylval", a PCY ACC predefined global variable, for use by the
parser.

Line 031 matches and discards blanks and tabs. Every action so far ends with a"return”
statement. "yylex()" returns atoken with each call by the parser. Inthe WC example, all
processing was controlled by the scanner. In this example, the parser is the center of
control. If the action for a pattern does not return to the parser, scanning continues and
the next pattern match is found. The empty action for the "[\t]" pattern does nothing
and the parser does not see whitespace. This idiom is a common one. Whitespace,
comments, and ends of line are ignored in the grammar of most modern programming
languages.

Unlike modern programming languages, this example program expects one date per line.
Ends of lines are not ignored: the line counter, "yylinena", is updated and the scanner
returns a token to the parser.

Line 036 isacatchall. The pattern matches any other single character and returnsit to the
parser. Thisis also a common idiom to pass off handling invalid characters and single
character operators and punctuation. The parser will handle all of these directly.

5. Writethe PCYACC Parser Description
The parser for the DATES program is built with ABRAXAS PCYACC. With minor

changes, it should work with YACC or any of its clones and work-alikes. The PCYACC
specific parts are noted in the explanation bel ow.

001: /*

002: * DATES.Y: grammar for U S. and European dates
003: */

004: %

005: #include <stdio. h> [* for fprintf() */
006: %

007:

008: 9% oken MONTH NUMBER
/* will be defined in dates.h */

009: %start i nput

010:

011: %»0

012:

013: input

014:

015: | input date “\n'
016: | input error "\n' { yyerrok; }
017:

018:

[* enpty file is legal */

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 33

019: date

020: /*

021: * U S text form

022: */

023: : MONTH day ',' \year { date($1, $2, $4); }
024:

025: /*

026: * European text form

027: */

028: | day MONTH year { date($2, $1, $3); }
029:

030: /*

031: * U S. short form

032: */

033: | nonth '/' day '/' year { date($1, $3, $5); }
034:

035: /*

036: * European short form

037: */

038: | day '.' nonth '.' year { date($3, $1, $5); }
039: ;

040:

041: day

042: : NUMBER

043:.

044:

045: nonth

046: : NUMBER

047:

048:

049: year

050: : NUMBER

051: ;

052:

053: %0

054:

055: extern int vyylineno; [* defined in lex.l */

056: extern int yyparse(void);

057: extern int days(int, int, int);

058:

059: /*

060: * main(): main routine for the program
061: */

062: main()

063: {

064: yylineno = 1,

065: printf("\nlnput a date: ");
066: yyparse();

067: }

068:

069: /*

070: * date(): generic date action routine

PCLEX Users Manual - Printed December 11, 2000

Page 34

071. */
072: static void date(int nonth, int day, int year)
073:

{
074 printf("%/ %/ %\ n", nonth, day, year);
075: days(nont h, day, year);
076: }
077:
078: /*
079: * yyerror(): error reporting routine
080: */
081: void yyerror(char *s)
082:
083: fprintf(stderr, "%\n", s);
084: }

Grammar Definition Files (GDF), like scanner definition files, are divided into three
sections by "% %" lines. For GDF, the sections are: the declaration section (lines 001
through 010), the grammar rule section (lines 012 through 052), and the program
section (lines 054 through 084). The declaration section contains comments, in-line C
code within "%{" and "%}" lines, token declarations, and the goal symbol declaration.
More complex grammars can have additional types of declarations.

The file "stdio.h" #included on line 005 defines the prototype for "printf()" which is
used in "main()", "date()", and "fprintf()" used in "yyerror()".

The "%token" declaration on line 008 introduces the two tokens (terminal symbols),
MONTH and NUMBER, used in the parser that are not character literals. PCYACC
will sequentially assign values, starting from 257, to these tokens and #define them in the
C header file, "dates.h”. The C header file is #included in the scanner description file
for these constants. The lexical scanner defined by the scanner description file, LEX.L,
will return the corresponding token values to the syntax parser upon the lexical analyzing
(see lines 014 through 025 and line 029 in the LEX.L file of last section.). Integer
values 1 to 256 are reserved for the ASCII characters. In the case that the lexical scanner
returns a single symbol to the parser, it just returns the ASCII value of the symbol.

The goal symbol, "input”, for the grammar is declared on line 009. The declaration on
line 009 is strictly speaking unnecessary. Token declarations are required by PCYACC
to alow it to check the grammar for consistency, similar to requiring a variable to be
declared before use. The goa symbol defaults to the first non-terminal that does not
appear on the right hand side of a production. It isexplicitly declared for safety.

The grammar rule section consists of a number of grammar rules. Each grammar rule has
aleft hand side (LHS), which is a nonterminal symbol, a':' operator separating the left
hand side and the right hand side, aright hand side (RHS), which is a sequence of zero
or more grammar symbols, and a semicolon indicating the end of the rule. An action
coding in C language is attached to a grammar rule using braces ('{' and '}'). Actions
should come before the grammar rule terminator (;'). A collection of grammar rules
with a common L HS are the syntactic aternatives of the nonterminal symbol and can be
grouped together. In this case, the common nonterminal symbol appears on the left hand

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 35

side of acolon, followed by a sequence of right hand sides separated by vertical bars ('['),
and terminated by a semicolon.

Actions are C language statements enclosed in curly brackets. Grammar symbols (both
terminals and nonterminals) appearing in a grammar rule can possess values. The values
of grammar symbols can be referenced from within action statements associated with the
rule. The conventions $$ represents the value of the LHS nonterminal symbol of a
grammar rule, $1 represents the value of the first grammar symbol of the RHS, $2 the
value of the second symbol of the RHS, etc.

The"error" on line 016 is a special termina symbol predefined by PCYACC. It can be
used in a GDF like aterminal symbol. The "error” symbol is generated internaly. The
parser will take "error" to be the next terminal symbol if the actual next terminal symbol,
produced by acall to the lexical scanner, leadsto an error operation for the current state.

The PCYACC predefined macro "yyerrok™ on line 016 tells the parser to return to the
normal state when it take "error" to be the current terminal symbol.

The main routine, main() runs from line 062 to line 067. It first initiates the line number
counter yylineno to be 1 and guides the user input a date. The most important task of
main routine is calling yyparse(), the LR parser generated by PCYACC. yyparse() is
called to work on the inputted date, it intern calls yylex() asking for the input data.
yyparse() returns a zero if the parsing process is successful. A non zero value is returned
if an error situation occurs during the parsing.

The second function, date(), prints the inputted data and invokes days() to do the
computation. The parser will call date() when it recognizes the inputted stream to be a
date. Seethe action parts on lines 023, 028, 033, and 038 of DATES.Y file.

The third function, yyerror(), prints an error message on the standard error device,
which, under MSDOS, will be the working window. yyerror() is the standard PCYACC
error routine. yyparse() will call yyerror() whenever it detects a syntax error. In our
example, yyerror() is oversimplified. In some cases a more sophisticated error handling
routine is necessary to produce comprehensive diagnostic messages and error recoveries.

6. Writethe Auxiliary C Code

The auxiliary function days() will actually perform the computation.

001: /*

002: * DAYS.C -- routines do the calculation

003: */

004: #include <stdio. h> [* for printf() */
005:

006: extern int yylineno; [* defined in lex.l */
007: [* initiated by main(), in */
008: /* dates.y, program section */
009:

010: extern int yyparse(void);

PCLEX Users Manual - Printed December 11, 2000

Page 36

011: /* generated by PCYACC */
012 /* according to dates.y */
013:
014: int reqular_year[]
015: { 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31, };
016:
017: int leap_year]|]
018: { 0, 31, 29, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31, };
019:
020: /*
021: * days(): calculating routine
022: */
023: days(int nonth, int day, int year)
024: {
025: int *yearis;
026:
027: /*
028: * check the year
029: */
030: yearis = check_year(year) ?
| eap_year : regul ar_year;
031:
032: /*
033: * check the nonth
034: */
035: if (month <1 || nonth > 12)
036: {
037: printf("nmonth should be in the range of
1-12\n");
038: return O;
039: }
040:
041: /*
042: * check the day
043: */
044: if (day < 1 || day > yearis[nonth])
045: {
046: printf("day of the nonth should be in the
range of 1-%l\n", yearis[nonth]);
047: return O;
048: }
049:
050: /*
051: * cal cul ate the nunber of days from
052: * January 1, 0000
053: */
054: for (nonth; nmonth > 1; nonth--)
055: day += yearis[nonth];
056:
057: if (year > 0)

Copyright (c) 1986-2000 Abraxas Software, Inc.

058:
059:
060:
061:
062:
063:

064:
065:

066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:
079:
080:
081:
082:

Page 37

day += year * 365;
day += year/4 - year/100 + year/400;

printf("The date is % days form
Jan. 1, 0000\ n\n", day-1);

printf("lInput another date or CTRL-C to exit
the programin\n");

return 1;

}

/*

* check _year(): |eap year checking routine
*/

check _year (int year)

if (year %4 !'= 0)
return O;

if (year % 100 !'= 0)
return O;

if (year %400 !'= 0)
return O;

return 1;

}

7. Build the Program

To obtain the executable file of our example we need to do the following:

a) generating the parser C source file, DATES.C, and the header file DATES.H, which
is created by the -D switch, using PCYACC:

C>peyacc -D datesy

b) generating the lexical scanner C sourcefile, LEX.C, using PCLEX

C>pclex lexl

¢) compiling and linking the parser C source file DATES.C, the scanner C source file
LEX.C, and the auxiliary C code file DAY S.C assuming that the Microsoft Visual C++
compiler is used

C>cl -Fedays dates.c lex.c days.c

The C compiler switch -Fedays gives the name days.exe to the executablefile.

PCLEX Users Manual - Printed December 11, 2000

Page 38

Now we get the executable file called DAY S.EXE.

8. Build the Program with MAKE

Most of the programming environment provide the MAKE utility which provides a
convenient way for project development relating recompilation process. When you
invoke the MAKE program, by determining which files depend on others in a project,
MAKE automatically execute the commands needed to update the project when any
project file has changed. The makefile of our exampleislisted as follows.

001: # DOS makefile for DAYS
002:

003: LD = cl -Fedays

004: LDFLAGS =

005: CFLAGS = -c

006: YFLAGS = -D

007: SRCS = days.c dates.c lex.c
008: OBJS = days. obj dates.obj |ex. obj
009:

010: days.exe: $(0BJIS)

011: $(LD) $(LDFLAGS) $(OBJIS)
012:

013: .c.obj:

014: cl $(CFLAGS) $*.c

015:

016: date.c: date.y

017: pcyacc $(YFLAGS) date.y
018:

019: lex.c: lex.|

020: pclex lex.|

Line 001 isacomment line. Preceding aline with a number sign ('#) makes the line to
be a comment line.

Lines 003 through 008 define couple macros which allow us to do text replacements
throughout the makefile. One can define a macro with

macroname = string

The string can be any string, including a null string. In our makefile, line 004 defines a
macro, LDFLAGS, to be anull string.

A macro can be invoked by enclosing its name in parentheses preceded by a dollar sign (

'$'). When MAKE runs, it replaces every invoked macroname with its corresponding
string.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 39

The Microsoft Visual C++ compiler option -c tells the compiler to compile the C source
fileslisted on the line, creating object files, but not to link the object files.

The PCYACC switch -D tells PCYACC to produce a C header file using the basename

of the grammar description file, dates. The generated header file DATES.H will be used
by yylex(), seeline 006 in thefile LEX.L in section 4.

PCLEX Users Manual - Printed December 11, 2000

Page 40

VIIT. ANSI C SYNTAX ANALYZER--A THIRD EXAMPLE

In this example we are trying to show the users how to build a language engine using
PCLEX and PCYACC. We will discuss both programming languages, the utilities and
the cooperation's in more detail.

The ANSI C lexical scanner, LEX.L, which isin the \ANSIC directory of the PCLEX
[DOS-0S/2] Toolkit Disk, isa"plug compatible" replacement for the hand coded lexical
scanner LEX.C in\ANSIC directory of the PCY ACC Professional Upgrade Disk. The
rest of the code is the same.

1. Problem Statement

The problem is building an ANSI C syntax analyzer which reads input C source files,
checks the syntax of the statements, and gives areport of the checking.

2. Developing the Sour ce Language

In this example the source language is ANSI C. We need to support all features of the
language.

The precise definition of escape sequences is different for PCLEX, the older Kernighan

and Ritchie C standard (K&R), and the ANSI C standard. The PCLEX escape
sequence definitionis:

\(.|0[0-7]{1,3})
Most of the older (K& R) C compilers use:
\(.\nfO[O-7]{0,3})

This definition allows escaped ends of lines. They are used for strings that span line
boundaries. PCLEX doesnot allow this.

The ANSI C escape sequence definition is a backslash followed by either
1) oneof theletters"abfnrtv",
asingle quote
adouble quote
aquestion mark, or
another backslash, or
2) oneto three octal digits, or
3) alower case "x" followed by one or more hexadecimal digits.

The above definition can be described by aregular expression:

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 41

\([abfnrtv A\ [[0-7]{ 1,3} [x[0-9a-FA-F] +)

PCLEX does not alow "\0". The string "\x007" is two bytes long for ANSI C
(equivalent to "\a", the BELL character and a terminating NUL) and five bytes long for
PCLEX and K&R C (equivalent to "x007").

3. Separatethe Lexical and Syntactic Parts

The implementation of the ANSI C syntax analyzer divides into four files: LEX.L,
ANSIC.Y, MAIN.C and ERR_SKEL.C. The lexical scanner generated by PCLEX
from LEX.L will handle keywords, identifiers, full numbers, one- and two-symbol
operators, letters, whitespace, and punctuation. The syntactic parser generated by
PCYACC from ANSIC.Y will handle statement and correctness recognition. Auxiliary
C function main() in MAIN.C file will handle Input/Output task. Auxiliary error
handling routines in ERR_SKEL .C file provide a general way for a language engine to
handle syntax errorsin the input source file.

Two levels of error handling are involved in a language engine: the external level is the
error reporting for the input source file for the language engine; and the internal level
involves what action need to be performed when syntax errors are occurred and how far
the parsing should go. The external level will be discussed in detail in this example. The
internal error handling routines are in the ERR_SKEL.C file provided in the diskette.
ERR_SKEL.C is quite general to any language engine. However the discussion of
ERR_SKEL.C file requires a deep understanding of PCYACC. Readers please see the
PCYACC user's manual for more information regarding to thefile.

4. Writethe PCLEX Scanner Description
The scanner description file LEX.L islisted as following:

001: %

002:

003: /*

004 s oo o o e e e s s e s e e s s e s s s e
005:

006: lex.l: lexical analyzer for ANSI C parser

007: Version 2.0

008: By Yan Luo

009:
010: PCYACC(R) is a software product of
011: ABRAXAS SOFTWARE | NC.

012: Copyright (C 1986-1997 by ABRAXAS SOFTWARE | NC.

013:

014 s oo o o e e e s s e s e e s s e s s s e
015: */

016:

017: #include <stdio. h>

018: /* FILE, fprintf(), fputc(),sprintf(), stderr */

019:

020: #include <string.h> [* strcnp(), strlen() */

PCLEX Users Manual - Printed December 11, 2000

Page 42

021: #include <ctype. h> [* isascii(), isprint() */
022: #include "ansic.h" /* token val ues */
023:

024: #define DIMa) (sizeof(a)/sizeof((a)[0]))

025:

026: extern char *yytext;/* pclex's predefined pointer */
027: /[* to the current token's text */
028:

029: extern FILE *yyin; [* pointer to the input file, */
030: [* defined in main.c */
031:

032: extern int error_count; [* error counter, */
033: /* defined in err_skel.c */
034:

035: int vyylineno = -1; [* current |ine nunber */
036:

037: %

038:

039: letter [a-zA-Z]

040: digit [0-9]

041: esc \W([abfnrtv"" 2A\]|[0-7]{1, 3}| x[0-9a-fA-F] +)
042: al phanum [a-zA-Z 0-9]

043: bl ank [\t]

044: ot her .

045:

046: % COVMENT

047:

The definition section spans from line 001 to line 047. Lines 017 to 022 #includes the
needed header files. Utilities defined in these headers can be used in the action parts of
the rule section and the user subroutine section.

Line 024 declares amacro, "DIM", used for calculating the number of itemsin atable.
Line 029 declares a FILE pointer to the input source file of the language engine. In the
last example, DATES, the program can only take inputs from the standard input device.
The pointer alows the language engine to parse C source files.

Line 032 declares the syntax error counter of the language engine counting the syntax
errorsin theinput C sourcefile of the language engine.

Line 035 declares a counter counting the input source file line number for error reporting
routines. Before the parsing processit is assigned to be - 1.

Lines 039 through 044 define several regular expression macros. Macro names are
substitutions of the corresponding patterns. The patterns can be referred in the rule
section with the macro names in braces, for example, "{letter}".

Line 039 defines "letter™ to be any letter in English. Line 040 defines "digit" to be any
decimal digit.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 43

Line 041 defines "esc" to be a backslash followed by either

1) oneof theletters"abfnrtv",
asingle quote
adouble quote
aquestion mark, or
another backslash, or

2) oneto three octal digits, or

3) alower case "x" followed by one or more hexadecimal digits.

Line 042 defines "alphanum™ to be any letter, the underscore character (' '), or any
digit.

Line 043 defines "blank" to be a space or atab.

The regular expression operator "." on line 044, the definition of "other"”, matches any
character except the end of aline.

Line 046 declares an exclusive start condition, "COMMENT". A detailed explanation
of exclusive start condition isin Chapter X, section 5.3.

The"% %" delimiter standing along on line 048 separates the definition section from the
rule section.

The rule section spans from line 049 to 096:

048: %0

049:

050: ~{blank}*"#".*$,

051: /* ignore preprocessor directives */
052:

053: "||" return OROR
054: "&&" ret urn ANDAND;
055: "==" return EQU,
056: "!=" return NEQ
057: "<=" return LEQ
058: ">=" return GEQ
059: "<<" return SHL;
060: ">>" return SHR
061: "++" ret urn ADDADD;
062: "--" return SUBSUB;
063: "->" return PTR
064. "+=" return ADDEQ
065. "-=" return SUBEQ
066:. "*=" return MILEQ
oe7: "/=" return DI VEQ
068:. "9%" return MODEQ
069: "<<=" return SHLEQ
070: ">>=" return SHREQ

PCLEX Users Manual - Printed December 11, 2000

Page 44

071: "&&=" return ANDEQ
072: "~=" return XOREQ
073. "|=" return | OREQ
074:
075: {letter}{al phanun* return binary search();
076:
077: {digit}+[uUL]* return | NTEGER CONSTANT,
078:
079: {digit}+\.{digit}*((elE)("+"|"-"){digit}+)?
return FLOAT_CONSTANT,;
080: \.{digit}+((elE)("+"|"-"){digit}+)?
return FLOAT_CONSTANT,;
081:
082: L2\ ([~ \\\n]|{esc})*\" return CHARACTER CONSTANT,;
083: LA"([~"\\\n]]|{esc})*\" return STRI NG
084:
085: {bl ank}+ ;
086: \n ++yyl i neno;
087: "[*" BEG N(COMVENT) ;
088: <COVMENT>"*/" BEG N(0) ;
089: <COVWMENT>[A*\n] + ;
090: /* breaks comments into |ines */
091: /* so they won't overflow buffer */
092:
093: <COWMENT>\ n ++yyl i neno;
094: <COWVMENT>"*" ;
095: {other} return yytext[O0];
096:

The first pattern in the rule section, line 050, matches preprocessor directives. They
are discarded by the scanner using an empty action. Regular expression macro "blank”
was defined to be a space or a tab in the definition section of the file (line 043).
Whenever a regular expression macro name appears within braces in the rule section,
PCLEX substitutesit (and the braces) with its definition.

The next block of patterns, line 053 through line 073, match the C multi-character
operators. The returned token macros are defined in the ANSIC.H file which is
generated by PCY ACC according to the ANSIC.Y file.

The pattern on the line 075, "{letter}{alphanum}*" matches both identifiers and
keywords in C. The function binary_search() defined in the user subroutine section
determines which.

The next three rules on lines 077 through 080 handles numeric constantsin C. Integers
are ssmple. Floating point numbers are fairly simple. The need to quote or escape al the
non-text characters obscures the underlying smplicity. Basicaly, afloating point number
is any number with a decimal point in it and a possible exponent after it. Two rules are
needed to make sure that a decimal point all by itself is not a number.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 45

The patterns for character literals and quoted strings on line 082 and line 083 follow.
The ANSI C standard makes a nod toward the multi-national nature of computer use with
locale specific characters. Preceding a character literal or string with a capital "L" alows
locale specific characters. Chinese, Japanese, Korean, and some other countries use
ideographic characters. Currently, double byte character set (DBCS) system or the
Unicode Standard is used to create coded character sets for such languages. Two bytes
(16-bit) are used to represent each character in both systems. The hexadecimal escape
sequences have no limit on the number of digits and can be more than a byte long. In our
example, the semantics of multi-byte charactersis not handled, but the syntax is checked.

The obvious pattern for a quoted string is:
"o\

This is short, elegant, clear, and unfortunately, doesn't work. If there is more than one
string on a line, this pattern matches both of the strings and everything in between
(remember, the longest match isused). The correct patterniis:

V([\Wn] [{ esc})*\"

This pattern excludes quotes and line boundaries from strings and handles escape
sequences properly. The escape sequence macro is overkill. A simpler regular
expression would allow al valid strings without trying to bring out the semantics. A
simpler pattern that is adequateis.

(R I\ S

Lines 084 and 085 handle white spaces. The scanner discards blanks and tabs. Ends of
lines are added to the line number, "yylineno" and otherwise ignored. Comments are also
discarded. Ends of lines within comments are counted. Any otherwise unmatched
character is passed directly to the parser.

A detailed explanation of the comment rules, lines 088 to 094, is in the section on
exclusive start conditions (Chapter X, section 5.3).

Line 095 handles the situation other than those discussed above.

The LEX.L scanner illustrates the techniques of recognizing the kinds of tokens you will
encounter in most programming languages. quoted literals, numeric literals, comments,
single and multi-character operators, identifiers, and keywords.

The "% %" delimiter standing along on line 097 separates the rule section from the user
subroutine section.

The user subroutine section spans from line 098 to 362. The first function in this
section, binary_search(), determines whether a name is an identifier in the C source file
or a reserved keyword in the C language. Other functions in this section are error
reporting routines for the language engine.

097: %
098:

PCLEX Users Manual - Printed December 11, 2000

Page 46

099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:

/*

* reserved word table

*/

static const struct

char *nane;

int yylex;
} keywords[] =
{

{"auto", Aut o},
{" break", Br eak},
{"case", Case},
{"char", Char},
{"const", Const },
{"continue", Cont i nue},
{"defaul t", Defaul t},
{"do", Do},
{" doubl e", Doubl e},
{"el se", El se},
{"enunt, Enunt,
{"extern", Ext er n},
{"float", Fl oat },
{"for", For},
{"got 0", CGot o},
{"if", 1 f},
{"int", I nt},
{"l ong", Long},
{"register", Regi ster},
{"return", Ret ur n},
{"short", Short},
{"signed", Si gned},
{"sizeof", Si zeof },
{"static", Static},
{"struct", Struct},
{"sw tch", Swi tch},
{"typedef", Typedef },
{"uni on", Uni on},
{"unsi gned", Unsi gned},
{"voi d", Voi d},
{"vol atil e", Vol ati | e},
{"while", Wi | e}

1

/*

* binary_search():

* reserved word table | ook up routine

*/

i nt binary_search(voi d)
register int md;
int cc, hi, lo;

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 47

151: | o
152: hi
153:

154: while (lo <= hi)

155: {

156: md = (lo + hi) / 2

157:

158: if((cc=strcnp(yytext, keywords[m d] . nane)) ==0)
159: return keywords[md].yyl ex;

160: if (cc <0)

161: hi = md - 1;

162: el se

163: lo = md + 1;

164: }

165: return | DENTI FI ER;

166: }

167:

0,
DI M keywords) - 1;

The reserved words in the array "keywor dg[]" must be in alphabetical order for the binary
search in "binary_search()" to work. Each keyword is paired with its token value that is
passed to the parser. Token vaues are defined in the PCYACC generated header file
ANSIC.H according to the grammar description file ANSIC.Y. Any name that is not a
keyword isan "IDENTIFIER".

The following error reporting routines are independent of the C lexical scanner defined
above. They are for the parser part of the language engine and could be put into another
file or the program part of the grammar description file. The reason for putting them
hear is for better discussion. Furthermore, usualy a grammar description file is
considerably bigger than the scanner description file and requires more computer memory
for compilation.

168: /*
169: * error reporting code for C | anguage engi ne
170: */

171:

172: #define WDTH 80 /* width of stderr device */
173: #define YYERRCODE 256 /* characters in ASCI | */
174

175: FILE *yyerrfile = stderr;

176: /[* file to wite error report to */
177:

178: char yyerrsrc[64] =""; /* current input file nane */
179:

180: /*

181: * yyerror(): inproved error reporting routine
182: */

183: void yyerror(char *s, char *t)

184.

185: static const char expecting[] = "expecting: ";

PCLEX Users Manual - Printed December 11, 2000

Page 48

186: static int list =
187: static int colum
188:
189: if (s !'= NULL)
190: {
191: if (colum !'= 0)
192: fputc('\n', yyerrfile);
193:
194. errprefix(s);
195:
196: if (t == NULL)
197: colum = 0;
198: el se
199: colum = fprintf(yyerrfile,"actual :%",t);
200:
201: list = 0O;
202: }
203: else if (t !'= NULL)
204.
205: if (list == 0)
206: {
207: i f(colum+strlen(t)+sizeof (expecting)+1
< WDTH - 2)
208: colum += fprintf(yyerrfile,
" U%%", expecting, t);

0;
= 0;

209: el se
210: col um

fprintf(yyerrfile, "\n%%",
expecting, t) - 1;

211 }

212: el se

213: {

214 if(colum

215: col um

+

strlen(t) < WDTH - 2)
= fprintf(yyerrfile,
", %", t);

+

216: el se
217: col um

fprintf(yyerrfile,

", \n %", t) - 1,
218: }
219: ++| i st ;
220: }
221: el se
222: {
223: fprintf(yyerrfi
224. colum = list =
225: }
226: }
227
228: |*
229: * errprefix():
230: * print where the error occured on yyerrfile
231: */
232: static void errprefix(char *nsgQ)

| "\'n");

e1
0;

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 49

233: {

234: int punct = O;

235:

236: fprintf(yyerrfile, "[error %] ", error_count+1l);
237:

238: if(yyerrsrc[O] !'="'"\0")/* any input file nanme? */
239: {

240: fprintf(yyerrfile, "file "%'", yyerrsrc);
241: punct = 1,

242:.

243: if (yylineno >= 0) [* valid |line nunber? */
244.

245: if (punct)

246: fprintf(yyerrfile, ", ");

247 fprintf(yyerrfile, "line %", yylineno);

248: punct = 1,

249: }

250: if(yytext !'= NULL && *yytext !'= "\0O'

251: /* real token? */
252: {

253: if (punct)

254: fprintf(yyerrfile, " ");

255: fprintf(yyerrfile, "near \"9%\"", yytext);
256: punct = 1,

257: }

258: i f (punct)

259: fprintf(yyerrfile, ": ");

260: fprintf(yyerrfile, "%\n", nsg);

261: }

262:

The error reporting routine, yyerror (), is the standard PCYACC error routine. yypar s&()
will call yyerror () whenever it detects a syntax error. The lexical scanner could also use
the same routine to report any lexical error occurred in the input source file.

yyerror() in the ANSIC project is quite different from the one in the DATES project.
Two parameters are passed to this version of yyerror(). Character pointer *swill point to
the type of the error. For example, "Syntax Error" or "lllegal Character”. The second
character pointer, *t, will point to the actual error token or the token expected. FILE
pointer *yyerrfile is used to guide the language engine reporting error message to a
specificfile. In our example stderr isused.

An auxiliary function, errprefix(), is called by yyerror() to report the location of the
error occurred and the current error number. Character array yyerrsrc[] holds the current
input C source file name. Function main() performs the assignment when the language
engine isinvoked.

Software devel opers can write their own version of yyerror () according to their needs.
The following function, yydisplay(), takes a token value as the passed parameter, "ch" ,

and returns a pointer to the print out form of the token. In our example the function is
passed to function yyerror() asthe second parameter.

PCLEX Users Manual - Printed December 11, 2000

Page 50

263. [*

264. * yydisplay():

265: * returns pointer to the printable form
266. * for token value of "ch"
267. */

268: char * yydisplay(int ch)
269: {

270: static char *tok[] =
271 {

272: " DDD',

273: " CHARACTER _CONSTANT",
274: " FLOAT _CONSTANT",
275: "1 NTEGER_CONSTANT",
276: "STRI NG',

277: " | DENTI FI ER",
278: " TYPENAME" ,

279: " ENUMERATI ON_CONSTANT",
280: "Aut 0",

281 "Break",

282: "Case",

283: "Char",

284. "Const ",

285: "Conti nue",

286: "Defaul t",

287: "Do",

288: "Doubl e",

289: "El se",

290: "Enun',

291 "Extern",

292: "Fl oat ",

293: "For",

294 "CGoto",

295: "Ifr,

296: “Int",

297: "Long",

298: "Regi ster",

299: "Return",

300: "Short",

301: "Si gned”,

302: "Si zeof ",

303: "Static",

304: "Struct",

305: "Switch",

306: "Typedef ",

307: "Uni on",

308: "Unsi gned"”,

309: "Voi d",

310: "Vol atile",

311: "Whi |l e",

312: "OROR",

313: " ANDAND" ,

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 51

314: "EQU',

315: "NEQ',

316: "LEQ',

317: "GEQ',

318: "SHL",

3109: "SHR',

320: " ADDADD" ,

321: " SUBSUB" ,

322: "PTR',

323: " ADDEQ',

324: " SUBEQ',

325: "MJLEQ',

326: "Dl VEQ',

327: " MODEQ',

328: "SHLEQ',

329: " SHREQ',

330: " ANDEQ',

331: " XOREQ',

332: "1 OREQ',

333: 0

334: };

335:

336: static char buf[16];

337:

338: switch (ch)

339: {

340: case O: return ("[end of file]");
341: case YYERRCODE: return ("[error]");

342: case "\a': return (""\\a'");

343: case "\'b': return (""\\b"");

344. case "\f': return (""\\f"'");

345: case "\n": return (""\\n"");

346: case "\r': return (""\\r'");

347: case "\t': return (""\\t"'");

348: case "\v': return (""\\v'");

349: }

350:

351: if (ch > YYERRCODE && ch < YYERRCCDE + DI Mt ok))
352: return(tok[ch-(YYERRCODE + 1)]);

353: [* is % oken */
354:

355: if (isascii(ch) && isprint(ch))

356: sprintf(buf, ""'%"", ch); [* printable */
357: el se

358: sprintf(buf,"char %", ch);/* unprintable */
359:

360: return(buf);

361: }

362:

PCLEX Users Manual - Printed December 11, 2000

Page 52

The tokens in the token table, "tok", should be in the order according to their
corresponding token values. Token values are defined in the PCY ACC generated header
file, ANSIC.H, according to the grammar description file, ANSIC.Y.

5. Writethe PCYACC Parser Description
The PCYACC parser description file ANSIC.Y islisted as following:

001: /*
002 s oo oo oo e e e e s s s e s e s s s s
003:
004: ANSIC.Y : PCYACC granmmar description file for ANSI C
005: version 2.0
006:
007: by Yan Luo
008:
009:
010: PCYACC (R) is a software product of
ABRAXAS SOFTWARE | NC.
011: Copyright (C 1986-1997 by ABRAXAS SOFTWARE | NC.
012:
013: Reference: The C Programm ng Language
014: Second Edition
015: By B.W Kernighan and DM Ritchie
016 s oo oo oo oo e e e e e e e e s e e s s e s s s e
017: */
018: %
019: #include <stdio. h>
020:
021: extern void vyyerror(char *, char *);
022: extern char *yydi splay(int);
023: extern int yyl ex(voi d);
024: %
025:
026: %uni on {
027: i nt i
028: fl oat r;
029: char *s;
030: }
031:
032: /*
033 ==========—=======
034: special synbols
035 ==========—=======
036: */
037: Y% oken DDD /[* three dots ... */
038:
039: /*

Copyright (c) 1986-2000 Abraxas Software, Inc.

041:
042:
043:
044:
045:
046:
047:
048:
049:
050:
051:
052:
053:
054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:

constants

e

% oken CHARACTER_CONSTANT
% oken FLOAT_CONSTANT

% oken | NTEGER _CONSTANT
% oken STRI NG

/ *

*/

% oken | DENTI FI ER

% oken TYPENAME

% oken ENUVERATI ON_CONSTANT

/*

key words

e

% oken Aut o Br eak Case Char

% oken Const Continue Default Do

% oken Doubl e El se Enum Extern
% oken Fl oat For Got o | f

% oken I nt Long Regi ster Return
% oken Shor t Si gned Si zeof Static
% oken Struct Switch Typedef Voi d
% oken Vol atile Union Unsigned Wile
/*

% oken
% oken
% oken
% oken
% oken

/*

OROR I* 1] */
ANDAND [* && */
EQU [* == */
NEQ [* 1= %/
LEQ [* <= */
GEQ [* >= %/

* shift operators

*/
% oken
% oken

SHL
SHR

~ —~
*

>> *f

PCLEX Users Manual - Printed December 11, 2000

Page 53

Page 54

093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:

/*

* unary increnents
*/
% oken ADDADD [* ++ */
% oken SuBSUB [* -- %]
/*
*; poi nt er
% oken PTR [* -> %]
/*

* assignnents
*/
% oken ADDEQ [* += */
% oken SUBEQ [* -= %]
% oken MULEQ [* *= %]
% oken DI VEQ [* [=*]
% oken MODEQ [* % */
% oken SHLEQ [* <<= */
% oken SHREQ [* >>= *]
% oken ANDEQ [* &= */
% oken XOREQ [* N= %]
% oken | OREQ [* | = *
/*
operator _precedence_
*/
%monassoc Shift
%monassoc error
%monassoc | DENTI FI ER
monassoc El se
/*

* comma oper at or
*/
% eft ,
/*
*; assi gnnent operators
% i ght ADDEQ SUBEQ MULEQ Dl VEQ

MODEQ SHLEQ SHREQ

/*

* binary operators
*/
% i1 ght s
% ef t OROR
% ef t ANDAND

Copyright (c) 1986-2000 Abraxas Software, Inc.

145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:

187:
188:

189:
190:

191:
192:

% eft EQU
% eft NEQ
% ef t LEQ GEQ
% eft SHL SHR
/*
* unary operators
*/
% i1 ght ADDADD
SUBSUB
o
Si zeof
/*
* special operators
*/
% ef t (! I
/*

*/
Ust art

%0
transl ation_unit

| translation_unit
| error /*

external _decl aration
function_definition
| declaration

function_definition

decl aration_specifiers

declaration_|i st

| declaration_specifiers

declaration_|i st

transl ation_unit

PTR

external _decl aration
ext ernal _decl aration
| ast ditch error

decl ar at or
conpound_st at enent

decl ar at or
conpound_st at enent

decl ar at or
conpound_st at enent

decl ar at or
conpound_st at enent

PCLEX Users Manual - Printed December 11, 2000

Page 55

recovery */

Page 56

193:
194:
195:
196:
197:

198:
199:

200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:

/*
* insert wong or mssing parts of function headers
*/
| declaration_specifiers error
conpound_st at enent

| decl ar at or
error conpound_st at enent
decl aration
decl aration_specifiers init_declarator_|ist ;
| declaration_specifiers ;
| identifier identifier_list ;
| identifier identifier '[' identifier ']' ;
| identifier "*' identifier ;
/*
* fixed incorrect initializers list
*/
| declaration_specifiers error ';' { yyerrok; }

decl aration_|i st
: _ _ decl aration
| declaration_list decl aration

declaratlon _specifiers
storage_cl ass_specifier
| storage_cl ass_specifier declaration_specifier
| type_specifier
| type_specifier decl aration_specifier
|
|

type_qualifier
type_qualifier decl arati on_specifier

storage cl ass_specifier
Aut o

| Extern

| Regi ster

| Static

| Typedef

type specifier
Char

| Doubl e

| Fl oat

| Int

| Long

Copyright (c) 1986-2000 Abraxas Software, Inc.

243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:

259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:

Short

Si gned

Unsi gned

Voi d

t ypedef nane

enum speci fier

struct _or _union_specifier

type_qualifier
: Const
| Volatile

struct _or_uni on_specifier
struct_or_union identifier
"{" struct _declaration_list
| struct_or_union "{" struct_declaration_list
| struct_or_union identifier

struct _or _union
St ruct
| Union

struct _decl aration_li st

| struct_declaration_|ist
init_declarator _|ist

: init_declarator
| init_declarator_list Y i nit_decl arator

i nit_decl arator
decl ar at or S
| decl arator L= initializer

struct decl aration
decl aration_specifiers struct_declarator_Iist

/*
* fixed incorrect structures
*/
| error bt { yyerrok;

struct _decl arator _|i st

PCLEX Users Manual - Printed December 11, 2000

}

Page 57

3
2

struct decl aration
struct decl aration

struct decl arator

Page 58

294: | struct_declarator_list L struct decl arator
295.

296:

297:. struct _decl arator

298: decl ar at or

299: | declarator const ant _expression
300: | const ant _expression
301:

302:

303: enum specifier

304: Enum identifier '{' enunmerator_list '}’

305: | Enum "{" enunerator list '}’

306: | Enum identifier

307:

308:

309: enunerator _|ist

310: enumner at or

311: | enunerator_|ist , enumner at or

312:

313:

314: enuner at or

315: identifier

316: | identifier . const ant _expression

317: [*

318: * fixed incorrect enuneration tags

319: */

320: | error

321:

322:

323: decl arator

324: . pointer di rect _decl arator

325: | di rect _decl ar at or

326:

327:

328: direct _decl arator

329: identifier %orec Shift
330: | (' declarator)
331: | direct_declarator '[' constant_expression "1
332: | direct_declarator ["1
333: | direct_declarator '(' paraneter_type |ist ")’
334: | direct_declarator '(' identifier_list ")’
335: | direct_declarator (' ")’
336:

337:

338: pointer

339: ¥ type_qualifier_list

340: | '*'

341: | ' *! type_qualifier_list poi nt er

342: | '*' poi nt er

343:

344:

345: type_qualifier_list

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 59

346: type_qualifier
347: | type_qualifier_list type_qualifier
348:

349:

350: paraneter _type |ist

351: : paraneter _|ist

352: | paraneter _|ist Y DDD

353:

354:

355: paraneter_|ist

356: par anet er _decl arati on
357: | paraneter _|ist Y par anet er _decl arati on
358:

359:

360: paraneter_declaration

361: : declaration_specifiers decl ar at or

362: | declaration_specifiers abstract _decl arat or
363: | declaration_specifiers

364:

365: /*

366: * fixed m ssing paraneter

367: */

368: | declaration_specifiers error

369:

370:

371: identifier_list

372: . identifier

373: | identifier_list Y identifier

374: | error /[* insert mssing identifier */
375:

376:

377: initializer

378: : assignnent_expression

379: | '{" initializer_list "}

380: | '{' initializer_list L "}

381:

382:

383: initializer_list

384: . initializer

385: | initializer_list L initializer

386: | error [* fixed m ssing constant */
387

388:

389: type_nane

390: : declaration_specifiers abstract decl arat or
391: | declaration_specifiers

392:

393:

394: abstract _decl arator

395: : pointer

396: | pointer di rect _abstract decl arator

397: | di rect _abstract decl arator

PCLEX Users Manual - Printed December 11, 2000

Page 60

398:
399:
400:
401:
402:
403:
404
405:

406:

407:

408:

4009:

410:
411:
412:
413:
414:
415:
416:
417:
418:
4109:
420:
421:
422:
423:
424
425:
426:
427:
428:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
441

di rect _abstract decl arator
: ("
| L
| N
| (!
| (

| direct_abstract _decl arator

abstract _decl ar at or
const ant _expression '

paraneter _type |ist

N’ N b b

"['" constant_expression ']’

| direct_abstract_declarato
1 [1

| direct_abstract_decl arator

"(' paraneter _type list ")’

| direct_abstract_declarato
1 (1

t ypedef nane
. TYPENAME

st at enment
. | abel ed_st at enent
| expression_statenent
| conpound_st at enent
| sel ection_statenent
| iteration_statenent
| junp_statenent

/*

* |ast ditch statenent recovery
*/

| error ';" { yyerrok; }

| abel ed_st at enent
identifier
| Case const ant _expression
| Default

expr essi on_st at enent
. expression !

conpound_st at enent

st at enent
st at enent
st at enent

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 61

441: "{" declaration_list statenment _list '}
442: | '{' declaration_list "}
443: | '{' statenent list '}’
444: | ' {' "}
445.
446:
447. statenent |i st
448:. . st at enent
449: | statenent_list statenent
450:
451:
452: sel ection_stat enent
453: : |If "('" expression ')' statenent %orec Shift
454:. | |If "('" expression ')' statenment Else statenent
455: | Swtch '(' expression ')' statenent
456:
457:
458: iteration_statenent
459: Waile ' (' expression ')' statenent
460: | Do statenent Wiile '(' expression ')' ';'
461: | For "(' expression ';' expression ';
expression ')' statenent
462: | For "(' expression ';' expression ';
)" statenent
463: | For "(' expression ';' ;
expression ')' statenent
464: | For "(' expression ';' ;
)" statenent
465: | For (' ";' expression ';
expression ')' statenent
466: | For (' ";' expression ';
)" statenent
467: | For (! b :
expression ')' statenent
468: | For (! Y ;
)" statenent
469:
470: [*
471: * fixed error in "for expression list"
472. */
473: | For (' error ')' statenent
474.
475:

476: | unp_st at enent

PCLEX Users Manual - Printed December 11, 2000

Page 62

477. . Goto | DENTI FI ER ;!
478: | Conti nue ;
479: | Break ;
480: | Return expression
481: | Return ;
482:
483:
484: expression
485: assi gnment _expressi on
486: | expression t assi gnment _expressi on
487:
488: [*
489: * | owest precedence infix op
490: */
491: | expression error assi gnment _expressi on
492:
493:
494: assi gnnent _expression
495: . conditional expression
496: | unary_expression assi gnment _oper at or
497: assi gnment _expressi on
498:
499:
500: assi gnnent oper at or
501. = '=
502: MULEQ
503: DI VEQ
504: MODEQ
505: ADDEQ
506: SUBEQ
507: SHLEQ
508: SHREQ
509: ANDEQ
510: | OREQ
511: XOREQ
512:
513:
514: conditional _expression
515: : logical _or_expression
516: | logical _or_expression '?' expression
' condi tional _expression
517:
518:
519: constant _expression
520: : conditional _expression
521:
522:
523: | ogi cal _or_expression
524: | ogi cal _and_expressi on
525: | logical _or_expression OROR | ogi cal _and_expression
526: ;
527:

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 63

528: | ogi cal _and_expression
529: i ncl usi ve_or _expression
530: | logical_and_expression ANDAND

i ncl usi ve_or _expression

531: ;
532:
533: inclusive_or_expression
534: excl usi ve_or _expression
535: | inclusive_or_expression e

excl usi ve_or _expression
536: ;
537:
538: excl usive_or_expression
539: and_expressi on
540: | exclusive_or_expression P and_expressi on
541:
542:
543: and_expression
544: equal i ty_expression
545: | and_expression ' & equal i ty_expression
546:
547:
548: equality_expression
549: rel ati onal _expression
550: | equality_expression EQU relational _expression
551: | equality_expression NEQ relational expression
552:
553:
554: rel ational _expression
555: shift_expression
556: | relational _expression ‘< shift_expression
557: | rel ational _expression b shift_expression
558: | rel ational _expression LEQ shift_expression
559: | relational _expression GEQ shi ft_expression
560: ;
561:
562: shift_expression
563: addi tive_expression
564: | shift_expression SHL addi tive_expression
565: | shift_expression SHR addi tive_expression
566: ;
567:
568: additive_expression
569: mul tiplicative_expression
570: | additive_expression '+ nultiplicative_expression
571: | additive_expression '-' nultiplicative_expression
572:
573:
574: multiplicative_expression
575: cast _expression
576: | multiplicative_expression P cast _expression
577: | multiplicative_expression A cast _expression

PCLEX Users Manual - Printed December 11, 2000

Page 64

578:
579:
580:
581:
582:
583:
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
594:
595:
596:
597:
598:
599:
600:
601:
602:
603:
604:
605:
606:

607:

608:

609:
610:
611:
612:
613:
614:
615:
616:
617:
618:
619:
620:
621:
622:
623:

mul tiplicative_expression "% cast _expression

cast _expression

(' type_nane

unary expressi on

postfix_
ADDADD

SUBSUB
unary_oper at or
Si zeof

Si zeof

unary_oper at or

*
] +|
|

postflx expression

primary_expressi
postfi x_expressi

postfi x_expressi
postfi x_expressi

postfi x_expressi
postfi x_expressi
postfi x_expressi
postfi x_expressi

prlnary expressi on

argunent _expression_|i st

identifier
const ant
string

"(' expression

on
on

on
on

on
on
on
on

unary_expression
cast _expression

expr essi on
unary_expression
unary_expression
cast _expression
unary_ expreSS|on
type_nane ')’

expr essi on

argunent _expression_|i st

b | DENTI FI ER
PTR | DENTI FI ER
ADDADD
SUBSUB

Copyright (c) 1986-2000 Abraxas Software, Inc.

assi gnnment _expressi on

Page 65

624: | argunent_expression_list ',' assignnment_expression

625:

626:

627. constant

628: . | NTEGER _CONSTANT

629: | CHARACTER _CONSTANT

630: | FLOAT_CONSTANT
|

631: ENUVERATI ON_CONSTANT
632:

633:

634: identifier

635: : | DENTI FI ER

636: :

637:

638: string

639: : STRI NG

640: :

6. Writethe Auxiliary C Code
The auxiliary C file MAIN.C islisted as following:

001: /*
002 s oo oo oo oo e o e e e s e s s s s e s s s e
003: MAIN.C. main routine for ANSIC parser
004: Version 2.0
005: by Yan Luo
006:
007: PCYACC (R) is a software product of
ABRAXAS SOFTWARE | NC.
008: Copyright (C 1986-1997 by ABRAXAS SOFTWARE | NC.
009 s oo oo oo oo e e e e e e s s e s e e e e s s s
010: */
011:
012: #include <stdio.h> /* fopen(),fclose(),fprintf() */
013:
014: #include <stdlib.h> /* EXIT_FAl LURE/ SUCCESS, exit() */
015:
016: #include <string.h> /* strcpy() */
017:
018: extern int yylineno;
[* line # of current line, defined in lex.l */
019:
020: extern int error_count;
/* count of errors, defined in err_skel.c */
021:
022: extern char yyerrsrc[64];
/[* input file name, defined in lex.| */
023:

PCLEX Users Manual - Printed December 11, 2000

Page 66

024: extern int yyparse(v0|d) [* defined in err_skel.c */

026: FILE *yyi n; [* pointer to input file */
027:
028: main(int argc, char *argv[])
029: {
030: if (argc < 2)
031:
032: fprintf(stderr,
"\'nUsage:\n\tansi c8 <progranp\n\n\tor\n\n");
033:
034: fprintf(stderr, "\tansic7 <progranmr\n\n");
035: exit (EXI T_FAI LURE); /* EXIT_FAILURE = 1 */
036:
037:
038: yyin = fopen(argv[1], "r");
039:
040: if (yyin == NULL)
041:
042: fprintf(stderr,
"Can't open source programfile %\n",
argv[1]);
043: exi t (EXI T_FAI LURE) ; /* EXIT_FAILURE = 1 */
044: }
045:
046: strcpy(yyerrsrc, argv[1l]);
047: yylineno = 1,
048: (void) yyparse();
049: fcl ose(yyin);
050:
051: if (error_count != 0)
052:
053: fprintf(stderr,
"\n<==== % error% found by the par ser ====>\n",
error_count, (error_count == 1) ? o "s");
054:
055: exi t (EXI T_FAI LURE)
056:
057: el se
058:
059: fprintf(stdout,
060: "\'nNo syntax error was found by the parser\n");
061:
062:
063: exi t (EXI T_SUCCESS) ; [* EXIT_SUCCESS = 0 */
064: }

7. Build the Program

The makefile of our ANSI C syntax analyzer islisted as follows.

Copyright (c) 1986-2000 Abraxas Software, Inc.

001:
002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012:
013:
014:
015:
016:
017:
018:
019:
020:
021:
022:

Page 67

#

UNI X style makefile for ANSI C syntax anal yzer
#

CC=cl

CFLAGS=-c -qc

OBJS=ansi c.obj nain.obj |ex.obj

ansi c.exe : $(0BJS)
$(CO) $(0BIS)

. C. 0bj
$(CC $(CFLAGS) $*.c

lex.c : lex.|
pclex |ex.|

ansic.c : ansic.y _
pcyacc -r -n -D ansic.y

ansic.obj : ansic.c

main.obj : global.h main.c

PCLEX Users Manual - Printed December 11, 2000

Page 68

I X. PRINCIPLESBEHIND PCLEX

1. Introduction to For mal Languages

Noam Chomsky, a linguist, in the mid-1950s defined a taxonomy of formal languages
that is till in use. He defined four broad classes of languages in terms of the grammars,
which are 4-tuples

G=(\V,T,P, S
where;

isagrammar;

={N, T} isan aphabet contains non termina symbolsN and terminal
symbols T;

inV isan alphabet of terminal symbols;

isafinite set of rewriting rules; and

S isasingle non terminal , amember of N, which servesasan initia symbol to
initiate each derivation sequence.

T <O

The language of the grammar is the set of termina string that can be generated from S.
The difference in the four types of grammarsis the allowed forms of the rewriting rulesin
P. A grammar G is Chomsky type O if the rulesin P have the form

u:=u withuinV+and U inV*.
That is the left part u is a sequence of symbols and the right part U can be empty.

Chomsky type O grammars are also known as phrase structure grammars or phrase
grammars. Little work has been done on type O grammars.

For the type 1 grammars, the context sensitive grammars, the rewriting rules are
restricted to the form:

xUy 1= xuy withU inN; x,yinV*, anduinV+.

The context sensitive part in the name comes from the fact that U can be rewritten as u
only in the context of x...y. Context sensitive grammars have received quite a bit of
attention from the theoreticians in linguistics, mathematics, and computer science.

In the type 2 or context free grammars, the rewriting rules are further restricted to the
form:

U::=u withUinNanduinV*.

This class of grammars are called context free because U can be rewritten as u, regardless
of the context it appears in. The context free grammars are restricted enough to be
amenable to analysis and general enough to be useful. Almost al programming
languages have context free grammars.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 69

The rewriting rules for the Chomsky type 3 or regular grammars are even more
restrictive. The form must be:

U::=uorU:=wu,whereuisinT and U and w arein N.

Regular grammars have a fundamenta role in both formal language theory and automata
theory. The set of strings generated by a regular grammar is aso the set "accepted” by a
simple program (or machine) called a finite state automata (which is more precisely
defined in Chapter 1X), and vice versa. Thus we have a characterization of this set of
languages in terms of the program complexity required to parse them.

Phrase structure grammars are the most genera and include the languages generated by
the other three types of grammar. Each of the classes is completely included in its
predecessor and completely includes its successor class. That is al regular languages
have a regular grammar, a context free grammar, a context sensitive grammar, and a
phrase structure grammar. There are phrase structure languages that do have a context
sensitive grammar.

2. Regular Expressions

Regular expressions are a notation for defining a regular language. The rules of the
notation comprise a pattern description language. Regular expressions can be described
by a context-free grammar:

RegularExpression = (T, N, P, S)
where
a T={ 2, *+/ () /, symbol}

where symbol is any symbol in the alphabet of the target language the regular expression
defines.

b) N = { RegularExpression,PrimaryList, Primary, Element }

P isthe set of grammar rules or productions. It should take the formof U :=u with U
inNanduinV*. Pislisted asfollowing:

C) RegularExpression -> RegularExpression '|' PrimaryList
RegularExpression -> RegularExpression '/* PrimaryList
RegularExpression -> PrimaryList
PrimaryList -> PrimaryList Primary
PrimaryList -> Primary
Primary -> Element '*'

Primary -> Element '+'

Primary -> Element '?'

Primary -> Element

Element -> symbol

Element ->'(' RegularExpression ')’

And, Sisthe starting non terminal:

PCLEX Users Manual - Printed December 11, 2000

Page 70
d) S={RegularExpression }

3. Regular Languages

A regular language, or called aregular set, is alanguage can be defined by either aregular
grammar or aregular expression. More often in the practice we use a regular expression
to define a regular language. Thus a language is regular if there exists a regular
expression that represents the strings in the language. Some of the conclusions of further
research regarding to regular language are listed as following:

Every finite set of stringsisaregular language or, every regular language isfinite;

If L1 and L2 are regular languages, then L1* or L2*, L1|L2, and L1.L 2 are aso regular
languages;

If L isaregular language, then L{0,n} with n>=0 isaso aregular language;

If L isaregular language, then L{1,1} = L{0,0}L.

4. Non deter ministic Finite State Machines (NDFSM)

A finite-state machine is defined as a 5-tuple:
M=(T,QP,qF)

where:

M is afinite-state machine;
T isan alphabet contains terminal symbols;
Q isafinite set of states;
g inQisone specific state called the start state;
F inQisaset of fina states or halting states;
P isafinite set of transition rules defining how the automaton advances from
one state to the next according to the current state and the input symbol.

Strings in aregular language defined by a regular grammar or a regular expression can be
recognized by a finite-state machine which processes the input string one character at a
time. When the last character has been processed, if the machine is in one of a final
states, the string is accepted; otherwise, it is rejected. If two automata accept the same
language, they are said to be equivalent. If two automata are equivalent and have the
same states and transitions except for the names of the states, they are call isomorphic. |If
an automaton has no equivalent automata with fewer states, it is called reduced.

A non deterministic finite-state machine (NFSM) can have more than one possible
transition for any given state and input symbol. It can arbitrarily choose any available
transition. If there exists at least one sequence of transitions form the start state to a final
state that reads the whole string, the non deterministic finite-state machine is said to
accept the input string.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 71

A state transition without reading an input token is call an empty transition. A non
deterministic finite-state machine allows to make an empty transition.

5. Deterministic Finite State Machines (DFSM)

A deterministic finite-state machine (DFSM) has at most one possible transition for any
given state and input symbol and does not alow to make an empty transition.

6. PCLEX -- From Regular Expressionsto DFSM

Many strategies can be used for building a finite state machine, or caled a lexica
anayzer, from a regular expression. PCLEX uses the strategy that first construct an
NFSM from aregular expression and then convert the NFSM into aDFSM.
Thompson's construction is one of the algorithms building an NFSM from a regular

expression. The input of the construction is aregular expression r over an aphabet T.
The output of the construction isan NFSM accepting language L (r).

The methods of the algorithm is described as follows:

i) For a regular expression e which denotes the set containing the empty string, {e},
construct the NFSM

wherei isanew start state and f is a new accepting state.

i) For aregular expression a, where ais asymbol in T, that denotes the set containing
string a, {a}, construct the NFSM

wherei isanew start state and f is a new accepting state.
Suppose N(a) and N(b) are NFSM's for regular expressionsa and b.

iii) For theregular expression alb, construct the NFSM

PCLEX Users Manual - Printed December 11, 2000

Page 72

iX) For the regular expression ab, construct the NFSM

-------- >j -------> Na Nb) ------->f

X) For theregular expression a*, construct the NFSM

And the algorithm is as following :
a) parser into its constituent sub expressions;

b) using rules (i) and (ii) described above to construct NFSM's for each of the basic
symbolsinr;

¢) combining these NFSM's inductively using rule (iii), (ix), and (x) until obtaining the
NFSM for the entire expression.

An algorithm called subset construction is then used to construct a DFSM, denoted by D,
from the NFSM, denoted by N. By definition, D should be able to accept the same
language L(r). Each DFSM dtate is a set of NFSM states. The subset construction
algorithm constructs a transition table, Dtran, for D so that D will simulate al possible
moves N can make on a given input string.

Let c represents a possible input symbol, s represents an NFSM state, SO the start state of
N, Saset of NFSM states that defines a DFSM state, and Dstates the set of states of D.
Three operations are used to keep track of sets of NFSM states. They are:

e-closure(s) : the set of NFSM states reachable from s on e-transition;

e-closure(S): the set of NFSM states reachable from some sin S on e-transition;

move(S, c): the set of NFSM states to which there is atransition on input symbol ¢ from
somesin S.

The algorithm then can be written as.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 73

e the Dtran to all failure transitions.

Initiat
while (there is an unmarked S in Dstates)
{
mark S
for(each input synbol c)
U = e-closure(nove(S,c));
if(Uis not 0)
if (Uis not in Dstates)
add U as a new unmarked state
to Dstates
Diran[S,c] = U
}
}
}

PCLEX Users Manual - Printed December 11, 2000

Page 74

X.WRITING PCLEX SYNTAX DESCRIPTIONS

A simple scanner program is.

%%
\t output(' ");

This program converts all tabs to blanks. The "% %" marks the beginning of the rules.
The rule contains a pattern to match tabs ("\t") and an action (" output(’);"). Everytime
the pattern is matched, the action is executed. The function "output()" writes a character
to the output (usually "stdout”, the standard output) and is included in every generated
scanner.

In general, the structure of PCLEX input filesis:

definitions

%%

rules

%%

user subroutines

The definition section contains pattern macro definitions (see section 4), start condition
declarations (see sections 5.1 and 5.2), and any preliminary in-line C code. The rule
section is patterns to search for and actions to execute when the pattern is found. The
user subroutines are C support routines used by the actions. The definition and user
subroutine sections are optional. The second "% %" is optional, but the first is required
to mark the beginning of the rules.

Rules start in the first column and are a pattern and an optional action. Patterns are
written with regular expressions (section 1). Actions (section 2) are C program
fragments to be executed when the pattern is found. Whitespace (blanks or tabs) separate
patterns and actions. Unmatched input is handled by the default action (see "-s" option in
Chapter 111, section 1.2).

The rule section can be empty. The default action applies to al unmatched input. If the
"-s" is not specified, the default action is to copy all input to the output. The minimum
PCLEX programisoneline:

%%

It copies the input to the outpui.

C code needed in the scanner can be included in one of three ways. Linesthat start with a
"#" in the first column are passed through intact. This alows preprocessor directives. C
comments and lines that start with a tab or a space are also passed through intact.
Arbitrary lines between a "%{" line and a "%}" line are also passed through. The
bracketing lines are not copied to the C scanner file. The brackets must start in the first
column. For example:

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 75

#i ncl ude <stdi o. h>
#defi ne MAX_W DGET 100
#defi ne LONG MACRO \

rest of the macro

[* C comrents */
%
int word_count = O;
static void do_nothing(void);

%

C code in the definition section is copied to near the start of the scanner. Header file
#includes, globa variables, C macro definitions, and redefinition of the pre-defined
macros go here. C code in the rule section (other than actions) is copied to the start of the
scanner function, just after the scanner function's own local variables. Local variables
used by the actions and initial code to be executed each time the scanner is called goes
here.

1. Regular Expressions

A regular expression specifies a set of strings to be matched. It contains text characters
(which match themselves in the text to be compared) and operator characters (which
specify repetitions, choices, and other features). The letters of the aphabet and the digits
are always text characters.

1.1 Operators
The operator characters are:
"AIN-?2FH[08/{}% <>

and if they are to be used as text characters, they must be put in quotes or preceded by a
backslash. In addition, "#" and "/" are not text charactersin the first column.

Whatever is between a pair of double quotes (") is to be taken as text characters. An
operator character can aso be turned into a text character by preceding it by a "\", the
escape character. Thefollowing patterns are all equivalent:

Xyz\+\+
XyZII++II
IIXyZ++II

Another use of the quoting mechanisms is to get a blank into an expression. Normally,
blanks and tabs end arule. Any blank not within a character class (see section 1.2) must
be quoted or escaped. PCLEX recognizes the older Kernighan and Ritchie (K&R) C
escape sequences. "\n" is a new line, "\t" is a tab and "\040" is the blank character (the
syntax of ANSI C escape sequences is dightly different). The NUL character ("\0") is
not allowed in patterns.

PCLEX Users Manual - Printed December 11, 2000

Page 76

1.2 Character Classes

Two dlightly different patterns (for example, "sit" and "sat") can be combined into the
single pattern ("gai]t"). The "ai" enclosed in square brackets, "[" and "]", matches a
single character, either asingle "a" or asingle "i". The brackets enclose a character class,
a list of aternatives to match. Character classes can include escape sequences (for
example, "[\t\n]" matches a whitespace character). A character class is negated or
complemented by a caret at the beginning. For example, "[* \t\n]" is any character except
a blank, tab, or end of line. Note that thisis not the same as the printable characters, it
includes the control characters.

The other operator in character classes is the range operator. The digits form a
continuous range and can be abbreviated to "[0-9]" instead of "[0123456789]". The octal
digits are "[0-7]". The lower and upper case letters both form ranges and "[a-zA-Z]"
matches any letter. The order of the range limits is unimportant, "[a-z]" and "[z-a]" are
equivalent. Ranges of other characters are alowed, but PCLEX gives a warning
message. The actual contents of the character class are machine-dependent. To use the
hyphen as itself in a character class, put it at the end or beginning of the character class or
escape it with a backdash, e.g., "[-at+]", "[+a-]", and "[a\-+]" are all equivalent. The
character class "[\001-\0177]" is all allowed characters and "[-~]", "[*\01-\037\0177]",
and "[\040-\0176]" are the 96 ASCII printable characters.

1.3 Repetition

Repetitions of elements are indicated by the "*" and "+" operators. The regular
expression "A*" matches any number of A's, including none, while "A+" matches one or
more A's. The pattern for C identifiersis:

[azA-Z][_azA-Z0-9]*

A specific number of repetitions is specified by a number inside braces,"{" and "}". For
example, "AA" and "A{2}" both match exactly two A's. Two numbers separated by a
comma inside the braces specify a range of repetitions. For example, "[a-z]{1,5}"
matches one to five lower-case | etters.

1.4 Arbitrary Character

The "." operator matches any character except the end of a line. For example, "a.b"
matches "aab", "aOb", "a\b", etc. To avoid letting unmatched input fall through to the
default action, the last rule in the section is typically:

[* action for al other input */

Do not use the patterns ".*" or ".+" to replace the default action, hoping to get unmatched
input text in chunks, instead of a character at atime. The".+" pattern matches entire lines
and overrides almost any other pattern. Use the single character pattern in the example to
replace the default action, to start with. (When you are proficient with PCL EX, consider
redefining the ECHO macro as described in Appendix 111.)

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 77

1.5 Alternation and Grouping

The "|" operator indicates alternation (either this or that) and the "()" operator pair
indicates grouping. The expression "(ablcd)" matches either "ab" or "cd". Alternation is
the lowest precedence operator. As a complete pattern, "ab|cd" also matches "ab" or
"cd". The patterns in each column below are equivalent to each other:

abjcd [acC]

(ablcd) (alolc)

(ab)|(cd)
Multi-character patterns can be repeated by enclosing them in parentheses and following
them with either "+" or "*". For example, "(abc)+" matches any number of repetitions of

"abc", i.e, "abc", "abcabc", "abcabcabc", etc. The patterns " (alelijoju)+" and "[aeiou]+"
are equivalent and match any number of consecutive vowels.

1.6 Optional Expressions

The "?" operator indicates that the preceding element is optional. For example, "ab?c"
matches either "ac" or "abc". Groups and character classes can also be optional,
"a(b|c)?d" and "a[b-c]?d" both match "ad", "abd", and "acd".

1.7 Context Sensitivity

Sometimes it is desirable to match a pattern only within a specific context. Context
before the pattern (left context) is handled with start conditions, exclusive start
conditions, actions, and the """ operator. Context after the pattern (trailing context) is
handled with the /" and "$" operators, and the "yyless()" action.

The "A" character is only an operator in the first column of a pattern (or as the first
character in a character class). Elsewhere, it isatext character. The """ operator anchors
a pattern to the start of aline. The pattern must start at the beginning of the line to match.
For example:

& R\
matches C preprocessor directives. Other left context methods are explained in section 5.
The "$" character is an operator only when it's the last character in a pattern. Elsewhere,
it isatext character. The"$" operator anchors the pattern to the end of aline. It does not
match the end of line character(s), it restricts matches of the pattern to immediately before
the end of aline. For example, the scanner program:

NS

matches and discards trailing whitespace on lines. The ends of lines are not matched and
remain in the output.

The "/" operator is a more general way of indicating trailing context. The pattern
precedes the "/" and the trailing context follows. For example, the patterns "abc$" and

PCLEX Users Manual - Printed December 11, 2000

Page 78

"abc/\n" are equivalent. Both match three characters and leave the end of line for another
pattern to match.

Another way to handle trailing context is with the "yyless()" action. It is described in the
next section on actions.

2. Actions

When a pattern is matched, the scanner executes the corresponding action, the C code
associated with the pattern. If PCLEX finds a match of a pattern without associated C
code, it will write a copy of the matched input to the output; that is, PCLEX does the
default ECHO action.

PCLEX allows multiple statements in an action. If they will fit after the pattern on the
same line, no braces are necessary. Longer actions are enclosed in braces, "{" and "}",
and can span severa lines. The braces must be balanced. PCL EX's brace counting can
be thrown off by braces in comments and quoted strings. If an action has either of these,
use "% {" "%}" brackets. These brackets cannot be nested or substituted for braces. Do
not put either bracket in a comment or quoted literal. If you need one in a string, use
escape sequences to break it up. For example, instead of " %{...%}", use " %\{...%\}"
onolder K& R C compilersand " %" "{...%" "}" on ANSI C compilers.

3. Ambiguous Rules

PCLEX generated scanners compare the patterns against the input stream. The longest
string that matches a pattern is read into "yytext[]", the pattern's action executed, and
scanning resumes on the remaining input. If more than one pattern matches this input
string, the order of the patterns in the scanner description file determines which matches.
Thefirst pattern isthe first choice. For example, given the patterns:

abc
[abc]+

Both patterns match the first three characters of "abcd". The action associated with the
first pattern will be taken.

A frequent shortcut for scanners used with parsers is to have no explicit rules for single
character operators and delimiters, and to add afinal rulelike:

return yytext[0];

This matches any character not otherwise matched and passes it to the parser. Since the
parser has to deal with invalid input anyway, this leaves the problem of reporting invalid
characters as well as invalid syntax up to the parser. This centralizes both lexical and
syntactic error reporting in one place.

Sometimes the above rules are not sufficient. One may need an action determining that
another match is better. The "REJECT;" action forces the scanner to put back the text
matched and take the next best match. The REJECT alows PCLEX use even in
situations where the basic pattern matching mechanism is not quite general enough.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 79

Sometimes, matches should not be laid end to end. Instead, al possible matches, even
ones that overlap are wanted. For example, consider the following scanner program to
count the frequency of pairs of letters (digraphs) in afile:

%%
[azA-Z][azA-Z] ++digraph[yytext[O]][yytext[1]];

This scanner counts consecutive pairs. For example, in the word "pair” it would count
two digraphs: "pa" and "ir". To count overlapping pairs, i.e., "pa“, "a", and "ir", the
following changes are needed:

%%
[azA-Z][a-zA-Z] {
++digraph[yytext[O]][yytext[1]];
\ REJECT;

Note that this can also be done another way:

%%

[azA-Z][a-zA-Z] {
++digraph[yytext[O]][yytext[1]];
yyless();

For clarity, some details necessary for a working program have been omitted. The
complete programs are in the \DIGRAPH directory.

In general, the REJECT action is useful for matches that overlap and for instances where
semantics and lexical analysis interact.

4. Definitions

Definitions (macros for regular expressions) are declared in the first section of the
scanner description (before thefirst "% %"). They are of the form:

name translation

and must start in the first column. The trandation is substituted in the rule section
wherever "name" appears within braces. The following scanner program matches C
identifiers:

apha [azA-Z]

digit [0-9]

%%

({apha} [)({alpha} { digit} |)*

In PCLEX, the replaced text is enclosed in parentheses. For example, given the
definition and regular expression:

PCLEX Users Manual - Printed December 11, 2000

Page 80

NAME [A-Z][A-Z0-9]*
%%

foo{ NAME} ?

%%

PCLEX (and FLEX) will match "foo" because they expand the rule to:
foo([A-Z][A-Z0-9]*)?

Both of the character classes are included in the optional part. UNIX LEX will not match
"foo" because it expandsthe rule to:

foo[A-Z][A-Z0-9]*?

Here, the "?" only applies to the second character class. The first character classisin the
required part.

5. Context Sensitivity

Not all programs have the same syntax throughout the entire input. For example, the
three different sections in both PCLEX and PCYACC have quite different syntax.
PCLEX provides several facilities to make a pattern sensitive to left and right context.
This section describes fore ways to handle this situation: with the actions and user
subroutines (section 5.1), with start conditions (section 5.2), with exclusive start
conditions (section 5.3) and with specia position anchors (section 5.4).

5.1 Actions and User Subroutines

Actions can explicitly set and test variables to change the output depending on some prior
condition. This method is suitable when the output is context dependent and the input
syntax is constant regardless of context.

In an action, the matched text is pointed by the character pointer "yytext", and its length
is in the integer variable "yyleng". The amount of matched text can be changed in the
action. "yytext" should not be changed directly.

The built-in action "yyless(n)" indicates that only the first "n" characters of the current
match are to be retained and the rest are to be pushed back onto the input for rescanning.
The "yyless()" function provides the same sort of lookahead offered by the "/" operator
(see section 1.7) in adifferent form. The following two rules are equivalent:

abcd/efg
abcdefg yyless(4);

The difference is that yytext holds "abcdefg" in the second rule; yytext holds "abcd” in
thefirst rule.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 81

5.2 Start Conditions

Start conditions allow turning some patterns on in some contexts and off in others.
Which is useful in the case one requires that one token precede another. The scanner
starts off with all start conditions off, the default start condition. Actions put the scanner
in a start condition and return it to the default start condition. Each start condition must
first be declared in the definition section with aline like:

%Start namel name2
The start conditions may be named in any order. The keyword "% Start" can be
shortened to either "%s" or "% S'. The start condition is referenced at the start of the
applicable rule(s) in pointed brackets, "<" and ">": <namel> or <name2>.
To enter start condition "namel”, execute the action statement:

BEGIN(namel);
To reset the start condition to the default, execute the action:

BEGIN(0);
For example:

%Start namel

%%

patternl { BEGIN(namel);}

<namel>pattern2 { BEGIN(0); action; }
In our example, pattern2 is only recognized when the scanner is in the start condition
"namel”, that is, patternl had been matched. After pattern2 being matched the scanner
reset the start condition to the default.

The scanner can be in only one start condition a at time. A rule may be active in several
start conditions. For example:

<namel,name2,name3>pattern ;
Except when the scanner is in an exclusive start condition, any rule not beginning with a
"<>" prefix is aways active. For example, in processing a SDF, one may code something
like:

%Start section2

%%

~o/69%"{ BEGIN(section2):}

In the example all rules not beginning with a "<>" will be active no mater it processes
sectionl or section?2 of the input SDF.

PCLEX Users Manual - Printed December 11, 2000

Page 82

The current definition of the BEGIN macrois:
#defineBEGIN yy start=1+

This maintains compatibility with UNIX LEX. However, there is atrap for the unwary
here. The naive expectation for the action "BEGIN2<<x;" is
"yy_start =1+ (2<<x);", the redity is"yy_start = (1+2) <<x;" (in C, "+" is higher
precedence than "<<"). It is strongly suggested that you always enclose the "BEGIN"
expression in parentheses. Thiswill give the expected results, even if the BEGIN macro
definition changesin future releases.

5.3 Exclusive Start Conditions

A regular start condition turns on additional rules when active. An exclusive start
condition turns off al norma rules and turns on only those rules prefixed with the
exclusive start condition name. Exclusive start conditions are declared in the definition
section with "% x" instead of "%¢s".

Matches can theoretically be of any length (for example, "(.|\n)*" matches the entire input
file). The practical limit is set by the size of an interna buffer. If a match can span
several lines, it should be broken into several matches, each not exceeding a line in
length. A good way to break up the matches is with start, middle, and end patterns. The
start patterns match the beginning, (e.g., the "/*" in a C comment) and BEGIN the
exclusive start condition. The middle patterns are prefixed by the exclusive start name in
"<>" and match partia or whole lines in the middle (e.g., anything up to the end of the
line or a"*/"). The end patterns match the character(s) that close the whole thing (e.g.,
"*[") and reset the start condition with "BEGIN(0);".

C comments can extend over severa lines. Whatever the scanner's buffer size, some
program will exceed it. The C comments portion of the ANSI C scanner in \ANSIC
looks like this:

%X COMMENT

%%

Vil BEGIN(COMMENT);
<COMMENT>"*/" BEGIN(O);
<COMMENT>["*\n]+ ;

<COMMENT>\n ++yylineno;

<COMMENT>"*" ;
%%

The COMMENT exclusive start condition is declared in the definition section. The first
rule recognizes the start of a C comment. The second rule recognizes the end. To avoid
overflowing the scanner's internal buffer, the comment contents are recognized aline at a
time. The third and forth rules do this. The third and fifth rules fix a subtle problem. If
the third rule read "[*\n]+", it would match every line after the start of a comment
including the asterisk of the closing "*/" (except in the case of a"*/" a the start of aline
because the second and third rules would both match the same length text and the earlier
rule takes precedence). The "*" in the third rule prevents it from matching the comment's
close. Thefifth rule matches a solitary "*" without afollowing "/".

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 83

The above code would not work if COMMENT had been declared as a regular start
condition name since all regular patterns would still be active in the COMMENT state.

For extensive examples of exclusive start conditions, see SCAN.L in \PCLEX on the
PCLEX disk.

5.4 Special Position Anchors

The """ operator anchors a pattern to the start of aline. The "$" operator anchors the
pattern to the end of aline. And the"/" operator isused for indicating trailing context.

PCLEX Users Manual - Printed December 11, 2000

Page 84

APPENDIX A. INSTALLATION

Installation of PCLEX is simple and straight forward. Its self-contained nature makes it
much easier to install than comparable products.

1. System Requirements

PCLEX will work on most MS-DOS and Microsoft Windows 95/NT computers.
Specificaly, al IBM PCs, XTs, ATs, and compatibles, as well as IBM PS2s, i86, and
Pentium based computers. In fact PCLEX is available for all computer operating systems
and architectures.

The following minimum configuration is sufficient to run PCLEX:
640K B memory

3.5inch floppy drive
20 MB hard disk

The following programs are needed for software development using PCLEX:

1) A text editor for programming (like BRIEF, EPSILON, EMACS, or EDLIN). Many
word processing programs (like Word star) will work in non-document mode. The
scanner description file must be straight ASCII with no IBM extended characters, hidden
characters, or other characters with the high bit set.

2) A C/C++ compiler (like Microsoft Visual C++).

2. Making Working Copies

It is always a good practice to make copies of your original diskettes to protect against
accidental damage. Installation should be done from the copies and the original diskettes
stored safely away from the computer and other source of heat or strong magnetic fields
like music speakers, motors, and transformers.

3. Installing PCLEX

PCLEX eliminates the need for a separate library of source code, which was required by
earlier UNIX versions, and is still required by many other implementations. This change
makes it transparent to you as user that there is a library routine that supports PCLEX's
operation. This change also ssmplifiestheinstallation process.

To perform the standard installation, follow these steps (these are many alternate ways of
installing PCLEX):

1) create adirectory for PCLEX to reside (e.g., \PCLEX):

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 85

C>cd\
C>mkdir pclex
C>cd pclex

2) insert the diskette containing PCLEX indrive A:

3) copy files from the diskette to the hard disk, the /s switch allows you to copy al filesin
the diskette including sub directories:

C>copy a:*.* /s

4) modify "AUTOEXEC.BAT" file to add "\PCLEX" to the PATH environment
variable and reboot.

At this point, the installation process is complete and PCLEX is ready to go. (Filesin
sub directories of the distribution diskette contain several interesting examples, which
you may also want to copy onto your hard disk at this time; or you may choose to copy
them later as you need them.)

NOTE: If you already have a directory (like "\BIN") set up for executable programs,
"PCLEX.EXE" may be directly copied to that directory. No changes need to be made to
the "AUTOEXEC.BAT" file. However, it is recommended that you create a separate
directory for PCLEX. Creating a separate directory makes it easier to organize your
PCLEX related files and example PCLEX programs.

PCLEX Users Manual - Printed December 11, 2000

Page 86

APPENDIX B. ERROR MESSAGES

The error messages produced by PCLEX have the following format:

Lxxxx: Error Message

LOOO1:illegal character
the inputted character is out of ASCII character set

L0002: incomplete name definition
in the definition section of a SDF, a name following only
white spaces on aline

L0003: indented code found outside of action
in the rule section, only comment and action lines can be indented

L0004: undefined { name}
aname which has not been defined in the definition section
isused in the rule section

L0005: bad start condition name
aname can contain only letters, digits, underscores,
and must not start with adigit

L0006: missing quote
in the rule section only odd number of quotes being in a pattern

L00O07: bad character inside{}'s
in the rule section only a defined name or anumber list can beinside{}'s

L0008: missing }
in the rule section more {'s than }'sin a pattern

L0009: bad namein{}'s
aname can contain only letters, digits, underscores,
and must not start with adigit

L0010: read error in section 3 of the SDF
system function read() failed to read the contents of section 3
in a SDF into a buffer

LOO11: error in processing section 1 of the SDF
unknown syntax or system error found in processing start
condition name declaration or exclusive start condition name
declaration in the definition section of a SDF

L0012: bad start condition list in section 1 of the SDF
syntax error in a start condition name list or exclusive start condition

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 87

namelist. usually caused by someillegal characters being in the
names or by their self in the name list

L0013: unrecognized rule in section 2 of the SDF
syntax error inarule

L0014: undeclared start condition
a start condition name which has not been declared in the definition
section is used in the rule section

L0015: bad start condition list in section 2 of the SDF
error in astart condition name list or exclusive start condition
name list. usually caused by some bad names or undeclared start
condition namesin thelist

L0OO016: trailing context used twice
end of line anchor '$' used twice in a pattern

LOO17:illegal trailing context
both head and trail are variable-length; the trailing context had better
be fixed-length

L0018: bad iteration values
inside an iteration operator, {nl, n2}, n2 must be bigger then n1 and
nl must be bigger then zero

L0019: iteration value must be positive
inside an iteration operator, {nl, }, nl must be bigger then zero

LO020: null in rule
null character \O' found in arule

L0021 negative range in character class
in acharacter class[cl-c2], the ASCII value of c2 must bigger then
that of cl1

L0022: symbol table memory allocation failed
system error, can't allocate memory

L0023: name defined twice
name defined twice in the definition section of a SDF

L0024: start condition declared twice
start condition name declared twice in the definition section of a SDF

L0025: input rules are too complicated
the current maximum on number of NFA states plus the amount to
bump above by is bigger then the maximum number of NFA states

L0026: found too many transitions
too many possibilities in making transitions from one state to others

PCLEX Users Manual - Printed December 11, 2000

Page 88

L0027: PCLEX scanner push-back overflow
unputing more characters then inputted

L0028: fatal scanner internal error
PCLEX scanner can not find what action should be done upon a
token inputted

L0029: PCLEX input buffer overflowed
the inputted pattern string is more than 128 characters

L0030: PCLEX scanner saw EOF twice
system error, the scanner should not see EOF twice for one run

L0031: memory allocation of an internal integer array failed
system error, can't allocate memory

L0032: dynamic memory failure in copying string
system error, can't allocate memory

L. 0033: escape sequence for null not allowed
\\O is not allowed

L0034:illegal \" escape sequence
\W isnot allowed

L0035: memory reallocation of adynamic array failed
system error, can't allocate memory

L0036: consistency check failed in the epsilon closure
system error, the state should be marked if we've already pushed it
onto the stack

L0037: dynamic memory failure in converting a set of NDFA statesinto a DFA state
system error, can't allocate memory

L0038: consistency check failed in symbol transitions
system error, input character put in wrong place

L 0039: bad transition character detected
system error, input character put in wrong place

L0040: -p or -C flag must be given separately
command line message, other flags could be grouped together

L0041 unknown flag
command line message

L0042: could not create scanner output file
system function freopen() does not work well

L0043: extraneous arguments given
command line message

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 89
L0044: can not open input file
system function fopen() does not work well

L 0045: can not open skeleton file
system function fopen() does not work well

L0046: can not open temporary action file
system function fopen() does not work well

L0047 fatal parse error at the input SDF
unrecoverable grammar syntax error found in the SDF

L0048: fread() in PCLEX scanner failed
system function fread() does not work well

PCLEX Users Manual - Printed December 11, 2000

Page 90

APPENDIX C. EXTENDING AND CUSTOMIZING SCANNERS

PCLEX has a number of macros that can be redefined to customize or extend the
generated scanner. The input stream functions ("input()" and "unput()") can be called by
actions, user subroutines, and other parts of the program.

1. Macros

The following macros are those most likely to redefined. For portability, they should be
undefined before being redefined. "yywrap()" can be redefined as a macro or as a
function.

"yywrap()" - called when the scanner reaches the end of thefile. If it evaluatesto
non-zero, the scanner finishes up processing and returns a zero to the
caler. If "yywrap()" evaluatesto zero, the scanner continues, expecting
new input. Thisisuseful for doing file inclusion and other multiple input
filescanning. To do this, yyin aso needsto be adjusted. A common way
IS using system function freopen() to make yyin pointing to a new file.
The predefined "yywrap()" evaluatesto 1.

"ECHOQ" - isthe default action if the "-s" option is not given. The predefined

"ECHQO" macro copies the matched input to the output stream. Itis
equivalent to:

fputs(yytext, yyout);
Redefine it to change the default action.

"YY_DECL" - isamacro that declares the scanning function generated by
PCLEX. It can be redefined to change the function name, type, or
argument list. For example:

#undef YY_DECL
#define YY_DECL float lexscan(float a, float b)

gives the scanner function the name "lexscan". It takes two floats as
arguments and returns afloat. YY_DECL ispredefined as:

#define YY_DECL int yylex()

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 91

"YY_INPUT" - macro caled by "input()" to read more input text into a buffer.
Its three arguments are: the buffer to read the input into, an integer variable
that receives the number of characters actually read, and the size of the
buffer. The default valueis:

#defi ne YY_I NPUT(buf, result, max_size) \

if (fgets(buf, max_size, yyin) !'= NULL) \
result = strlen(buf); \

else if (Iferror(yyin)) \
result = YY_NULL; \

el se \
YY_FATAL_ERROR \

("fgets() in flex scanned failed");

A faster, though not as portable versionis:
#define YY_INPUT(buffer,result, max_size) \
if ((result=read(fileno(yyin), buf, max_size)) < 0) \
YY_FATAL_ERROR \

("fgets() in flex scanned failed");

On some compilers, The "read()" function does not do end of line
trandlation.

Because of the buffering within "input()", "YY_INPUT" should not be
called, except by "input()". If your code needs to read the input stream
directly, cal "input()".

"YY_BUF_SIZE" - isthe size of the input buffer used "input()" and "unput()".
Thelongest allowed matchis"YY_BUF_SIZE - 1", which evaluates to
254.

"YY_NULL" - isthevalue of the"result” in"YY _INPUT" macro at an end of
file (EOF) on the input stream.

2. Variables

"FILE *yyin" - input stream read by "input()", initialized to "stdin".

"FILE *yyout" - output stream written to by "ECHOQO", initialized to "stdout".

3. Functions

"input()" - returns the next input character.

"unput(c)" - pushesthe character "c" back onto the input stream to be later read
by "input()".

PCLEX Users Manual - Printed December 11, 2000

Page 92

4. Scanner Skeleton For mat

PCLEX combines the user's C code, tables generated from the patterns, and the scanner
code that uses the tables (the scanner skeleton). The default scanner skeleton codeis built
into PCLEX. With the -P option, you can use your own skeleton code. LEXSCAN.C in
\PCLEX isequivalent to the built-in skeleton. A skeleton isin four sections separated by
lines beginning with "% %". The skeleton is copied to the scanner C file with the "% %"
lines replaced by code copied from the scanner description file or tables generated by
PCLEX.

The first section of the skeleton is header file #includes, C macro definitions, and
function prototypes. The first "% %" line is replaced by C code from the definition
section and the scanner tables generated by PCLEX. The second section isthe "unput()"
and "input()" functions that buffer the input stream and handle the reading ahead and
backing up done for trailing context, "yyless()", and other methods of lookahead. The
scanner function header ("YY_DECL") and its local variable declarations finish up the
second section. The second "% %" lineis replaced by C code from the rule section of
the scanner description file. This code is declarations local to the scanner function used
by the actions and executable code to be run each time the scanner functioniscalled. The
third section is the bulk of the code that interprets the generated tables and does the actual
pattern matching. Thethird "% %" lineisreplaced by the actions code. Thiscodeisin
a"switch" statement. Each action's code is preceded by a "case" label and followed by a
"YY_BREAK" macro call. The"YY_BREAK" macro normally isa"break" statement.
The fourth section is the rest of the scanner function. The entire users subroutine section
is copied verbatim to the scanner C file, after the fourth section.

Study the LEXSCAN.C code carefully and look at several generated scanner C files
before writing your own scanner skeleton.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 93

APPENDI X D. BIBLIOGRAPHY
Aho, A.V. and Ullman, J.D. "Principle of Compiler Design”, Addison-Wesley, Reading,
M assachusetts, 1977.
Thisfirst edition is much better than the current ‘ second edition’.

Aho, A.V. and Ullman, J.D. "The Theory of Parsing, Transation, and Compiling”, Vol.
1, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

Theoriginal ‘theory’ of yacc table generation.

Barrett, William A. "Compiler Construction”, 2nd Edition, Science Research Associates,
Chicago.

Bickel, M. A. "Automatic Correction to Misspelled Names: A Fourth Generation
Language Approach", CACM, 30:224-228, 1987.

Chapman, N. "Regular Attribute Grammars and Finite Sate Machines' SIGPLAN
Notices, 24(6):97-104, 1989

Chomsky, Noam, "Three models for the description of languages,” |EEE Transactions on
Information Theory, Vol. 2 (1956), pg. 113-124.

Farmer, Mick. "Compiler Physiology for Beginners', Chartwell-Brat.

Fischer, Charles N. and LeBlanc, Richard J. "Crafting a Compiler”, Addison-Wesley,
1988.

Friedl, Jeffery E.F. “Mastering Regular Expressions’ O'Rellly & Associates 1997
This book is an excellent reference to the general field of regular expressions.

Genillard, C. and A. Srohmeier. "A Grammar Description Language for Lexical and
Syntactic Parsers' SIGPLAN Notices, 23(10):103-122, 1988

Grune, D. and Jacobs, C.J.H. "Parsing Techniques', Ellis Horwood, Chichester, England,
1990.

Holmes, Jim. “ Object-oriented compiler construction” Prentice Hall 1995
Our new Pclex Object Oriented Toolkit is based on the philosophy of this book.

Johnson, S.C. and Lesk, M.E. "Language Development Tools’, The Bell System
Technical Journal, Vol. 57, No. 6, Part 2 (July-August 1978).

Johnson, W. L., Porter, J. H., Ackley, S. I., and Ross, D. T. "Automatic Generation of

Efficient Lexical Processors using Finite-State Machines', CACM, 11(12):805-
813, 1968.

PCLEX Users Manual - Printed December 11, 2000

Page 94

Lemone, K. A. "Design of Compilers, Techniques of Programming Language
Trandation", CRC Press, 1992.

Lesk, M.E. and Schmidt, E. "Lex - A Lexical Analyzer", Unix Programmer's Manual,
Bell Laboratories, 1978.

Kernighan, B.W. and Ritchie, D.M. "The C Programming Language", Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

Mason, T., Brown D., and Levine, J. "Lex & Yacc", O'Reilly & Associates, Second
Edition, 1992.

Thisis an excellent book for beginners. The standard free PCY ACC DEMO will
do all examplesin this book.

Pyster, A.B." Compiler Design and Construction”, Van Nostrand Rheinhold, New Y ork,
New Y ork, 1980.

How to write a pascal compiler using lex& yacc.

Schreiner, A.T. and Friedman, Jr. H.G. "Introduction to Compiler Construction with
UNIX", Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

How to write a C compiler using lex& yacc.

Szafron, P. and R. Ng. "LexAGen: An Interactive Incremental Scanner Generator”, 20(5),
1990.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 95

APPENDI X E. GLOSSARY

Action: Fragment of C code executed when its corresponding pattern is matched.

Algorithm: step by step instructions on how to do some task, that guarantees
success. For example: in cooking, recipes are algorithms.

Backus-Naur Form (BNF): a notation used for describing context free grammars.
It was first used in the report on the ALGOL-60 programming language
for describing the syntax.

Backus-Normal Form (BNF): see Backus-Naur Form

Declaration Section: Thefirst part of a grammar description program, in which
one defines terminal symbols for grammars, declares types for grammar
symbols, precedence and associativity for grammar symbols.

Default: the action or value used if no action or value is explicitly given.

Default action: The default action of PCLEX isto copy the unmatched text to the
output.

Definition Section: The first part of a scanner description program, in which one
defines names, declares global variables, C macros, and #includes needed
header files.

Exclusive Sart Condition: a state used to turn off all normal rules and turn only
those rules prefixed with the exclusive start condition name

Equivalent: having identical effects. Two patterns are equivalent if every input
that one matches the other also matches.

Grammar: the structures of alanguage and the rules for combining them.

Grammar Description File (GDF): input file to PCY ACC describing the syntax of
the target language.

Grammar Description Language (GDL): the language used to describe the syntax
and parsing of the target language, a combination of BNF and C.

Grammar Description Program (GDP): programs written in GDL for parsing
programs in the target language.

Grammar Rule Section: the second part of a grammar description program, where
grammar rules and their associated actions are defined.

Keyword: word or identifier reserved by the language for special use. Examples
in C are: "if", "else", "void".

PCLEX Users Manual - Printed December 11, 2000

Page 96

Lexical Scanner: Front end of a parser, which reads the raw text input and
partition them into meaningful lexical units, or tokens, of the target
language.

Macro: an expression that resembles a constant or afunction call. TheC
preprocessor replaces every macro expression with its appropriate C
expansion before compilation.

Options: command line arguments to change the action of a program. Also
known as switches and flags.

Parser: A program that analyzes the syntax of program input.

Parser Generator: A program that is capable of automatically generating parsers
from alanguage description.

Port: (verb) short for transport. Means to move a program to another hardware or
software environment and make any necessary changes

PCYACC: Abraxas Software's implementation of YACC (see), a parser generator

iDrogram Section: third and last section of a grammar description program, where
needed C functions can be included.

Regular Expression: anotation for defining a regular language
Reserved Word: see Keyword.

Rule Section: the second part of a scanner description program, where the input
patterns to match and their corresponding actions are defined.

Scanner: see Lexical Scanner.

Scanner Definition File (SDF): input file to PCLEX that defines the tokens of the
input language and any auxiliary processing.

Scanner Definition Language (SDL): the language used to write scanner
description programs; a combination of regular expressions and C.

Scanner Definition Program (SDP): programs written in SDL that describe the
lexical analysis of atarget language.

Sart Condition: a state used to turn some patterns on in some contexts and off in
others.

Target Language: the language described by the scanner description program
Token: Smallest syntactic unit, usually recognized by scanners or lexical analysis.

Examples are: identifiers, keywords, operators, terminators, and
delimiters.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 97

User Subroutine Section: third and last section of a scanner description program,
where needed C functions can be included.

YACC: Y et Another Compiler-Compiler, awidely available parser generator.
%Sart: PCLEX keyword for declaring start condition

%S PCLEX keyword for declaring start condition

%s: PCLEX keyword for declaring start condition

%x: PCLEX keyword for declaring exclusive start condition

%%: Delimiters for separating different sections of a scanner description program
%({ ... %}: Delimits C definitions in definition section

< ...>: Delimits start conditions or exclusive start conditionsin the rule section

{ ... }: Delimits macro names in the pattern part of arule.

PCLEX Users Manual - Printed December 11, 2000

Page 98

APPENDIX F. DIFFERENCESBETWEEN LEX AND PCLEX

OO0OO0OO0O0O0

(ol elNe)

The FLEX engineis used.

Command line format has a PCY ACC flavor (see section 2).
Exclusive start conditions ("%x") have been added (see 3.5.2).

Ratfor scanners ("%r") are not supported.

Trandation tables ("%t") are not supported.

Internal array sizes are dynamically resized. The "%p", "%n", "%e", "%a",
"00k", and "%0" lines are ignored.

There is no run-time library to link to.

Definitions are enclosed in parentheses when expanded (see 3.4).
Only oneinput fileis supported. LEX concatenates al the filesin the
command line (see section 2).

multiple actions per line are allowed (see 3.2).

the undocumented LEX variable "yylineno" is not supported (see the
examplesin section 8 for how to explicitly support "yylineno".

the "yymore()" and "output()" functions are not supported.

Copyright (c) 1986-2000 Abraxas Software, Inc.

Page 99

APPENDIX G. DIFFERENCESBETWEEN FLEX AND PCLEX

Command line format has a PCY ACC flavor (see section 2).

no fast (FLEX "-f" option) or full (FLEX "-F" option) tables.

no equivalence classes (FLEX "-c€" option) or meta-equivalence classes
(FLEX "-cm" option).

default scanner skeleton is stored internally.

the FLEX header files ("fastsdef.h", "flexsdef.h", and "flexscom.h") are stored
internal to PCLEX and output at scanner generation time.

support -c and -C options.

support -h options.

interactive scanners (FLEX "-I" option) are always generated.

the REJECT action is always supported.

(o] (ol elNe)

[eNeNoNeo]

PCLEX Users Manual - Printed December 11, 2000

INDEX

-, 20 N 19,24, 77
" 20,75 {and}, 20, 76
#,75 |, 19, 77
#line directives, 11, 13 +, 21, 24,76
$, 20, 77 abstract machine, 16
3, 35 action, 13, 24
$1, 35 action part of arule, 24
$2, 35 Alfred Aho, 8
%%, 24 alphabet, 17
% % delimiter, 22 artificial language, 15
%{, 24 assembler, 15
%}, 24 assembly language, 15
%s, 81 Basic, 15
%S, 81 blank line, 24
% Start, 81 C,9 15 17
%token, 26, 34 C character escape, 20
% union, 27 C header file, generated by PCYACC, 26,
27
%X, 82
C multi-character operator, 44
(and), 77
C++ scanners, 11
* 21,76
case-insensitive, 10, 12
., 19,24
character class, 20, 24
/, 19, 75, 77, 83
character literal in C, 45
?. 21,77, 80
Chomsky, Noam, 68
[and], 20
closure operation, 21
\, 20, 75

closure operator, 21

CodeView, 11

compilation phase, 16

compiled execution, 16

compiler, 8, 16

compiler writer, 26

computer language, 15

context free grammar, 68

context sensitive grammar, 68

context-free grammear, 16

context-sensitive grammar, 16

corresponding actions, 24

dates.h, 34

DBCS, 45

declaration section, 34

default action, 11, 13

definition section, 21, 22, 24, 74
derivation, 18

deterministic finite-state machine, 25, 71

DFSM, 25, 71

disassembler, 15

double byte character set, 45
ECHO, 76, 78, 90
e-closure(s), 72

e-closure(S), 72

empty action, 24, 32, 44
empty string, 71

Eric Schmidt, 8

Page 101

error, 35
EXAMPLE.L, 11

execution phase, 16

finite-state automaton, 16, 21

finite-state grammar, 18

finite-state machine, 21, 70

FLEX, 8
Foreign Support, 13

formal grammar, 16

formal language, 16
FORTRAN, 9

FS grammar, 18

FSM, 21

GDF, 30

GDL, 26

GDP, 26

goal symbol, of GDF, 34

grammar, 16, 17, 68

grammar definition file, 34

grammar description language, 26

grammar description program, 26

grammear rule, 17

grammar rule section, 34
Gregorian calendar, 29
help screen, 10, 12

high-level language, 15, 16

identifier and keyword in C, 44

ideogr aphic character, 45 negative character class, 20

input pattern, 24 NFSM, 70

input(), 91 Noam Chomsky, 16
installation, 84 nondeterministic finite-state machine, 70
instruction set, 15 non-terminal, 17

interpreted execution, 16 NUL character, 75
interpreter, 16 numeric constantsin C, 44
Kevin Gong,, 8 object language, 16, 22
language engine, 40 object program, 16

left hand side, 34 options, 10

lefthand-side, 17 output file, 10

LEX, 8 output file, 11
LEXSCAN.C, 13 parser, 26

LHS, 17, 34 parser generator, 26
linear-bounded automaton,, 16 Pascal, 9, 15

low-level language, 15 pattern description language, 19
machine language, 15 PCLEX, 8,21, 71

main(), 34 PCYACC, 26

MAKE, 38 phrase grammar, 16, 68
makefile, 38 phrase structure grammar, 68
metacharacter, 19 preprocessor, 16
meta-language, 9 preprocessor directive, 44
Michael Lesk, 8 production, 17

move(S, ¢), 72 program, 15

multi-line action, 32 program generator, 8
multi-line actions, 32 program section, 34

MYSCAN.C, 13 programming language, 15

push-down automaton, 16, 26

quoted stringin C, 45
RE grammar, 18
reduction, 18

reqular expression, 18, 69

reqular grammar, 16, 18, 69

reqular language, 18, 70

regular set, 70

REJECT, 78

rewriting rule, 17

RHS, 17, 34

right hand side, 34
righthand-side, 17
rulesection, 21, 22, 24, 74

scanner description file, 10, 21, 22

scanner description language, 22

scanner description program, 22

scanner generator, 21

SDF, 10
SDL, 9
SDL comment, 24

semantic-analysis phase, 17

sentence, 17
skeleton, scanner, 11, 13

source language, 16, 22

source program, 16

stack machine, 26

start condition, 81

start symbol, 17, 18
stdout, 74

Stephen C. Johnson, 8
string specifier, 19

subset construction, 72

symbolic language, 15

table-driven interpreter, 25

target lanquage, 22

terminal, 17

Thompson's constr uction, 71

token, 17
trandator, 8, 15

Turing machine, 16

Unicode Standard, 45

unput(c), 91

user subroutine section, 22, 24, 74

Van Jacobson, 8
Vern Paxson, 8
WC.EXE, 25
WC.L, 23

word, 17

YACC, 8
YY_BUF_SIZE, 91
YY_DECL, 90
YY_INPUT, 91
YY_NULL, 91

Page 103

yyerrok, 35
yyerror(), 35
yyin, 91

yyleng, 24, 80
yyless, 80

yylex(), 22, 24, 26
yylex.c, 10

yylval, 27, 31, 32
yyout, 91

yyparse(), 26
YYSTYPE, 27
yytext, 10, 12, 32, 80
yywrap(), 90

Page 105

Generating L exical
Scannerswith
PCLEX

PCLEX® isa software product of ABRAXAS SOFTWARE®, Inc.
For moreinformation, contact:

ABRAXAS SOFTWARE, INC.
Post Office Box 19586
Portland, Oregon 97280, USA
Phone: 503-232-0540
Fax: 503-232-0543

Email: support@pcyacc.com

WWW.pCyacc.com

Copyright © PCLEX 1986-2000 Abraxas Software, Inc.

	TABLE OF CONTENTS
	PREFACE
	I. INTRODUCTION
	1. Typographic Conventions
	2. Examples

	II. OVERVIEW OF PCLEX
	1. History
	2. What PCLEX Does

	III. COMMAND LINE AND OPTIONS
	1. Command Line Format
	1.1 File Name Conventions
	1.2 Command Line Options

	2. Using Command Line Options
	2.1 Override Output C File Conventions (˚c and ˚C)
	2.2 Ask PCLEX for Help (˚h or ˚H)
	2.3 Generate Case-insensitive Scanner (-i or -I)
	2.4 Suppress #line Directives in Scanner (-n or -N)
	2.5 Override Default Scanner Skeleton (˚p or ˚P)
	2.6 Suppress Default Action (˚s or ˚S)
	2.7 Foreign Support for the 8-bit ASCII Character Set (-8)

	IV. BASIC CONCEPTS REVISITED
	1. What is a Programming Language
	2. What is a Programming Language Translator
	3. What are Compilers and Interpreters
	4. Grammar of a Language
	5. Regular Grammar and Regular Language
	6. Regular Expressions
	7. PCLEX Terminology -- A Short Review

	V. GETTING STARTED -- OUR FIRST EXAMPLE
	1. Scanner Description File for Word Count Program
	2. Building the Executable File
	3. Sample Session

	VI. INTEGRATING PCYACC AND PCLEX
	1. PCYACC -- A Parser Generator
	2. Parser and Scanner
	3. C Header File Generated by PCYACC
	4. "yylval" and "YYSTYPE"

	VII. DATES -- A SECOND EXAMPLE
	1. Problem Statement
	2. Developing the Source Language
	3. Separate the Lexical and Syntactic Parts
	4. Write the PCLEX Scanner Description
	5. Write the PCYACC Parser Description
	6. Write the Auxiliary C Code
	7. Build the Program
	8. Build the Program with MAKE

	VIII. ANSI C SYNTAX ANALYZER--A THIRD EXAMPLE
	1. Problem Statement
	2. Developing the Source Language
	3. Separate the Lexical and Syntactic Parts
	4. Write the PCLEX Scanner Description
	5. Write the PCYACC Parser Description
	6. Write the Auxiliary C Code
	7. Build the Program

	IX. PRINCIPLES BEHIND PCLEX
	1. Introduction to Formal Languages
	2. Regular Expressions
	3. Regular Languages
	4. Non deterministic Finite State Machines (NDFSM)
	5. Deterministic Finite State Machines (DFSM)
	6. PCLEX -- From Regular Expressions to DFSM

	X. WRITING PCLEX SYNTAX DESCRIPTIONS
	1. Regular Expressions
	1.1 Operators
	1.2 Character Classes
	1.3 Repetition
	1.4 Arbitrary Character
	1.5 Alternation and Grouping
	1.6 Optional Expressions
	1.7 Context Sensitivity

	2. Actions
	3. Ambiguous Rules
	4. Definitions
	5. Context Sensitivity
	5.1 Actions and User Subroutines
	5.2 Start Conditions
	5.3 Exclusive Start Conditions
	5.4 Special Position Anchors

	APPENDIX A. INSTALLATION
	1. System Requirements
	2. Making Working Copies
	3. Installing PCLEX

	APPENDIX B. ERROR MESSAGES
	APPENDIX C. EXTENDING AND CUSTOMIZING SCANNERS
	1. Macros
	2. Variables
	3. Functions
	4. Scanner Skeleton Format

	APPENDIX D. BIBLIOGRAPHY
	APPENDIX E. GLOSSARY
	APPENDIX F. DIFFERENCES BETWEEN LEX AND PCLEX
	APPENDIX G. DIFFERENCES BETWEEN FLEX AND PCLEX
	INDEX

