

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

1

Visual PCYACC

Developing and Debugging with
Visual Pcyacc

by
Y. Jenny Luo

PCYACC® is a software product of ABRAXAS SOFTWARE INC.

For more information, contact

ABRAXAS SOFTWARE INC.
Post Office Box 19586

Portland, OR 97280 USA

TEL: 503-244-5253
FAX: 503-244-8375

Internet: support@abxsoft.com
URL: http://www.abxsoft.com

Copyright© 1984-1997 by ABRAXAS SOFTWARE INC

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

2

I. OVERVIEW..4
II. LR Bottom-Up Parser..5

1. Definitions and Introductions ..5
2. LR Bottom-up Parser ..6
3. Example..9

III. How PCYDB Works ..12
1. States...12
2. State Actions ...12

a. Action: Shift to a new state...13
b. Action: Reduce one or more input tokens to a single
nonterminal symbol, according to a grammar rule13
c. Action: Go to a new state...14
d. Action: Accept the input ...15
e. Action: Find an error ...15

IV. Using Text Version PCYDB ..18
1. Invoking PCYDB ..18
2. Quitting PCYDB ...18

V. PCYDB Function ..20
1. BREAKSTATE...20
2. BREAKTOKEN..20
3. CLEARBREAK ..21
4. GENSTATE ..21
5. GO ..21
6. HELP...22
7. INIT ...22
8. LOADTOKEN...22
9. LOADSRC...23
10. QUIT..23
11. SAVE ...23
12. SETGDF..24
14. STACK...24
15. STATE...24
16. STEP..25
18. SYMBOL ...25

VI How to Use the Parse Tree ..26
VII. How to Use the Parsing Stack..28
VIII. How to Use Conflict Parse Trees..30
IX. How to Use Grammar Rule Matches...33
X. How to Use Regular Expression Matches ...35
XI. How to Control the Flow of Your Input Data36
XII. How to Use Parsing Tables..38
XIII. PCYPP – Handle Preprocessor and Comment in Integration of
GDF and SDF ...44

1. Separate *.ey file into *L.l and *Y.y files...44
2. Support minimum preprocessor ..48

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

3

2. Support comment inside GDF and SDF..50
XIV. Using GUI Version PCYDB...52

1. Invoking GUI PCYDB..53
a. Select description source files for YACC Debugger................53
b. Select input source file for YACC debugger53
c. Setting State Breakpoint for YACC Debugger54
d. Setting Token Breakpoint for YACC Debugger54
e. Single-Step Execution ..54
f. Execute Until a Breakpoint or EOF Is Hit54
g. Restart YACC Debugger ..54

1. Quitting GUI PCYDB...54
2. How to Use the Parse Tree...55
3. How to Use the Parsing Stack...55
4. How to Use Conflict Parse Trees ..55
5. How to Use Grammar Rule Matches..55
6. How to Use Regular Expression Matches.....................................56
7. How to Control the Flow of your Input...56
8. How to Use Parsing Tables ..56
9. Conclusion ...56

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

4

I. OVERVIEW
Recently, GUI YACC debugging has become more popular than any

time before. Although GUI application can provide user-friendly interface, it
is very slow mainly due to the fact that it has to deal with graphics library
overhead which is usually much less efficient than the YACC code itself. A
stand alone, portable and efficient YACC debugger is becoming much more
important for programmers who are using parsing and lexing tools to build
theirs own compilers and searching for quick implementation. Under this
circumstance, ABRAXAS SOFTWARE provides you a powerful YACC
interactive debugger called PCYDB.

PCYDB is a command-line and GUI based YACC debugger tool, which
uses most advanced lexing and parsing techniques available, bringing
everything inside parsing execution to your fingertips. It allows you to stop
parsing execution at any point, examine and change grammar file, and
“single step” through the parsing execution. When execution is paused, the
internal data of the parser can be displayed and examined to pinpoint
problems. PCYDB provides several important functionalitites, which you can
benefit from when building your own parser. These functions are listed as
following:

• See the Parse Tree

• See the Parsing Stack

• See Conflict Parse Trees

• See Grammar Rule Matches

• See Regular Expression Matches

• See the Flow of your Input Data

• See Various Tables

Detailed descriptions of these functionalities will be presented in their
respective chapters.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

5

II. LR Bottom-Up Parser
1. Definitions and Introductions

LR parsing is currently most popular parsing technique. This parsing
method is called bottom-up because it tries to construct a parse tree for an
input string beginning at the leaves (the bottom) and working up towards the
root (the top). It scans the input from left-to-right and constructs a rightmost
derivation in reverse. There are several reasons why this technique is quite
popular.

• For any programming language that can be defined using a context-
free grammar, LR parsers can be generated to parse the source code written
in that language.

• The LR parsing technique is more general than any of the other
common shift-reduce techniques. Although it is more general, the degree of
efficiency can be as good as other methods if implemented correctly.

• When scanning through the input from left to right, LR parser can
detect errors as soon as possible.

However, implementing a LR parser in an efficient way is not an easy
task. Fortunately, ABRAXAS Software provides PCYACC - a LR parser
generator to help you avoid doing too much work to implement a LR parser
by hand for a typical programming-language grammar. PCYACC is used to
generate deterministic bottom-up parsers. The generated parser starts with
the input word of the program source code, which is internally recognized as
a token and attempts to match a syntax structure for a string of tokens. If a
string of tokens matches a rule specified in the context-free grammar, a
production is found by the parser. When a right production side is found,
reduction to the nonterminal of the left side takes place. The parser then
alternates between reading the next input symbol and executing as many
reductions as necessary. The number of necessary reductions is determined
by whatever the initial reduction result is and the fixed-length section of the
remaining input. The bottom-up parser finishes its job by reading all its
inputs and reducing it to the start symbol specified by the context-free
grammar.

The syntax analysis parsers are based on the theory of automata and
formal languages. The important theorem that lays down the foundation of
the syntax parsing concerns the relationship between a syntax free grammar
and a pushdown automata:

(1) for every context-free grammar a pushdown automaton can be
constructed which accepts the language defined by the grammar.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

6

(2) the language accepted by a pushdown automaton is context free,
and therefore has a context-free grammar (which is even effectively
constructible).

Because a pushdown automata can be constructed for any language
that can be defined by the context free grammar, almost all the computer
programming languages are defined using the context free grammar. A LR
parser is a realization of the pushdown automata that accepts the context
free grammar specification of a language.

2. LR Bottom-up Parser

An LR parser consists of a parsing table and a driver routine. The
parsing table is generated from the context-free grammar of a language by a
parser generator. The driver routine makes sure the execution of the parser
follows the specification of the parsing table. The driver routine is the same
for all LR parsers; only the parsing table changes from one parser to another.
The driver routine is also usually copied to the parser code by a parser
generator. The parsing table is the key component of a LR parser because it
determines the characteristics of the parser. Figure 2-1 shows the generation
of parsing table and the parser’s functionality.

PCYACC

Grammar Parsing Table

Parser Generator

(a) Parsing table generation.

Driver Parsing

Input Output

 Routine Table

(b) Parser Functionality.

Figure 2-1. Parsing Table and Parser Functionality

Abraxas’s PCYACC is responsible for generating a LALR (Look Ahead
LR) parser. It generates the parsing tables from an input grammar
description file. The LALR parser thus generated is fairly powerful and can
be implemented efficiently.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

7

Figure 2-2 shows the internal operation of an LR parser. The parser
includes an input, a stack, a driver routine and a parsing table. A parsing
table consists of two parts, action and goto. The input is actually a token.

 t1 ••• ti ••• tn $ Input

 sm Driver Parsing

 Xm Routine Table

 Stack sm-1

 Xm-1

 •••

 s0

Figure 2-2. Diagram of LR bottom-up parser

The token is passed to the parser by a lexer. Every time the parser needs a
token, the parser calls the lexer. The lexer reads the input source code and
translates them into tokens. For simplicity, in Figure 2-2, the input is shown
as an integer array, which represents every token of the input stream with
the input order preserved. The functionality of the lexer is conveniently
omitted. The driver routine reads the input tokens from left to right from this
input one at a time. The driver routine populates the stack in the form of
s0X1s1X2s2…Xmsm, where sm is on the top of the stack. Xi represents a
grammar symbol and si is a state symbol. The information held in the stack
below the state symbol is summarized by the state symbol. The state symbol
on the top of the stack along with the current input symbol (token)
determines the index into the parsing table and the corresponding shift-
reduce parsing decision. The grammar symbols are not absolutely necessary
to be put onto the stack in actual implementations. It is included here to help
describe the operation of an LR parser.

There are two parts contained in a parsing table, ACTION functions
and GOTO functions. The driver routine determines the current state on top
of the stack sm based on the information saved on the stack below. It also
reads in the current input token ti. The driver routine then calls the function
ACTION[sm, ti], to determine the parsing action table entry for state sm and
input token ti. The parsing table entry determined by ACTION[sm, ti] can
have one of four values:

•••• shift s

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

8

•••• reduce Α → β

•••• accept

•••• error

The GOTO function determines the next state to goto based on current
state on the top of the stack and the current input symbol. It is essentially
the transition table of a deterministic finite automaton whose input symbols
are the terminals and nonterminals of the grammar.

A configuration of an LR parser consists of the stack contents followed
by the unexpanded token stream as shown below:

(s0 X1 s1 X2 s2 • • • Xm sm, ti ti+1 • • • tn $)

The parser decides on its next action to take by examining the current state
sm on top of the stack and reading in the next token from the input. The
parsing table entry ACTION[sm, ti] points to four types of actions that the
parser will take. They are described as follows,

• If ACTION[sm, ti] = shift s, the parser takes a shift action, the configuration
after executing a shift is

(s0 X1 s1 X2 s2 • • • Xm sm ti s, ..ti+1 • • • tn $)

Here s = GOTO[sm, ti] is the next state, which is also determined by the
current state sm and current input token ti. Thus the current input token and
the next state is shifted onto the stack. Notice that ti+1 now becomes the new
current input token.

• If ACTION[sm, ti] = reduce the grammar description of the form Α → β , a
reduce action is executed by the parser, after which the configuration
becomes,

(s0 X1 s1 X2 s2 • • • Xm-r sm-r A s, ti ti+1 • • • tn $)

where s = GOTO[sm-r, A] is a state determined from sm-r state and left hand
side of a production A. Here r is the length of β , the number of terminals and
non-terminals on right side of the production. The parser pops r state
symbols and r grammar symbols off the stack, leaving state sm-r at the top of
the stack. Then the parser pushes the left-hand side of the production A onto
the stack. Finally, the next state s, which is determined by the entry for
GOTO[sm-r, A], is pushed onto the stack. During the parser’s reduce action, no
change is made to the current input tokens. If the sequence of the grammar
symbols popped off the stack is reconstructed in sequence, it looks like,

Xm-r+1 ••• Xm,

it should always match the right hand of the reduction production β .

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

9

• If ACTION[sm, ti] = accept, then all the parsing is completed, all the
grammar rules have been reduced to the start symbol.

• If ACTION[sm, ti] = error, the parser detected errors in the input token
string, an error handling routine is called to display messages and recover
from the error.

The algorithm that the LR parser uses for its operation is very simple.
It starts with a designated initial state s0 and an initial configuration of

(s0, t1 t2 • • • tn $)

where t1 t2 ••• tn is the token string to be parsed. The parser determines its
next action to execute based on the current state and current input token.
This process iterates until it reaches an accept action or an unrecoverable
action. Almost all parses behave the same way, the difference exists only in
the parsing table where the next state or next action is specified.

3. Example

To illustrate the operation of an LR parser, we will use a very simple
example. The simple grammar we will use in this example is:

()
()
() *
()
(5) ()
()

1
2
3
4

6

E E T
E T
T T F
T F
F E
F id

→ +
→
→
→
→
→

Assume we have a parser generator like PCYACC which generates both the
driver routine and parsing table for us already. The parsing table specifying
the action and goto functions of an LR parser is shown in Figure 2-3.

State Action Goto

 id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

10

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Figure 2-3. Parsing table for LR Bottom-up Parser.

The meanings of the actions are:

• si shift and stack state i,

• rj means reduce by production numbered j,

• acc means accept,

• blank means error.

The next state to go to that is specified by the value of GOTO[s, t] for
terminal token t is found in the action field connected with the shift action on
input t for state s. The goto field gives GOTO[s, T] for nonterminal T.
However, how the entries are selected is solely determined by the parser
generator when it is generating the parsing tables for an LR parser. And this
is also where the difference between LR parsers comes from.

Now, assume an input token stream id * (id + id) will be parsed. The
sequence of actions taken by the parser and the state of stack and input
token stream is shown as following in Figure 2-4.

 Stack Input Action

(1) 0 id * (id + id)$ shift

(2) 0 id 5 * (id + id)$ reduced by r6

(3) 0 F 3 * (id + id)$ reduced by r4

(4) 0 T 2 * (id + id)$ shift

(5) 0 T 2 *7 (id + id)$ shift

(6) 0 T 2 *7 (4 id + id)$ shift

(7) 0 T 2 *7 (4 id 5 + id)$ reduced by r6

(8) 0 T 2*7 (4 F 3 + id)$ reduced by r4

(9) 0 T 2*7 (4 T 2 + id)$ reduced by r2

(10) 0 T 2*7 (4 E 8 + id)$ shift

(11) 0 T 2*7 (4 E 8 + 6 id)$ shift

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

11

(12) 0 T 2*7 (4 E 8 + 6 id 5)$ reduced by r6

(13) 0 T 2*7 (4 E 8 + 6 F 3)$ reduced by r4

(14) 0 T 2*7 (4 E 8 + 6 T 9)$ reduced by r1

(15) 0 T 2*7 (4 E 8)$ shift

(16) 0 T 2*7 (4 E 8) 11 $ reduced by r5

(17) 0 T 2*7 F 10 $ reduced by r3

(18) 0 T 2 $ reduced by r2

(19) 0 E 1 $ Accept

Figure 2-4. Actions of LR parser on id * (id + id)

The LR parser starts with an initial state of 0 (line (1)). The current
input token is id, the action to take is found in the parsing table based on the
state number and input token symbol. The action in row 0 and column id of
the action field of Figure 2-3 is s5, meaning shift (putting one input token
onto stack from input stream) and fill the stack with state 5 on the top. After
execution of the action, the first token id and the state symbol 5 have both
been pushed onto the stack, and id has been removed from the input token
stream with the remaining input stream as “* (id + id)”. This is illustrated
in line (2).

Now, * becomes the current input token, and looking at the action of
state 5 on input token * is to reduce by r6. Since r6 is referenced to F→id, so
two symbols (one state symbol and one grammar symbol) are popped from
stack and only state 0 remains on the top of the stack. According to parsing
table, the destination state of goto function on state 0 for F nonterminal is
state 3, so nonterminal F and state 3 have been pushed onto stack. Similarly,
the remaining moves on input id * (id + id) can be deducted according to
previous description. The operation of the parser completes by reaching an
accept action or stopped by encountering an error action.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

12

III. How PCYDB Works
PCYDB is a YACC debugger designed for the purpose of debugging

parsers generated by Abraxas PCYACC. It allows user to follow the entire
parsing procedure, examine almost real-time changes in stack, parse tree
and input token stream. It also allows user to compare the internal operation
of the parser and how grammar rules are matched.

The LR parser theory that Abraxas PCYACC based on has been
covered in the previous chapter. The following chapters focus on describing
PCYDB internal functionalities, debugger commands and examples
illustrating the usage of PCYDB.

To use PCYDB effectively, it is helpful to understand some of the
internal working of the LR parser generated by PCYACC tool.

1. States

The internal state of a parser is a point where the parser is reading
input from the token stream and ready to handle one of them. The driver
routine inside the parser consults the parsing table to switch between states
and take appropriate actions.

The parser generated by YACC uses the internal states to subdivide
the parsing process into simpler processes. For each step, the parser reads its
input token stream and based on current state and current input token to
determine the action to take the picks the next state by checking the
lookahead token (next token in the input stream).

Each state is assigned a number. The initial state is usually numbered
as state 0 to distinguish it as the parser’s initial condition before any token is
read from the input stream. Others states are numbered when YACC
generates the parser and is dependent on the implementation of YACC.

2. State Actions

For each internal state of a parser, there are several actions that can
be taken. The possible actions are:

• Shift to a new state

• Reduce one or more input tokens to a single nonterminal symbol,
according to a grammar rule

• Go to a new state

• Accept the input

• Find an error

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

13

The actual action taken by the parser is determined by the current
state the parser is in and the current input token. Most of the time several
choice of actions exist at each state, special states also exist that the parser
can only have one action no matter what the input lookahead token is.

The following is a description for each of the possible actions that the
parser can take. Understanding these actions will be a great help for
comprehend the inner workings of PCYACC parser.

a. Action: Shift to a new state

The shift action is taken by the parser when the parser is in the
middle of validating a grammar. The lookahead token is read in and several
possible states can be selected by the parser as the next state. The choice is
made based on the lookahead token and current state. After entering the new
state, the parser can shift to another state based on the next lookahead token
read from the input stream.

Internal to the parser, there is a state stack to keep track of the state
transitions that the parser is experiencing. The stack records the history of
the states that the parser has been in. When the parser shifts to a new state,
the previous state is pushed onto the state stack.

In addition to the state stack, there is a value stack, which records
the values of tokens and nonterminal symbols during the source code parsing
process. The token value is returned by the lexer “yylex” called by the parser.
It is usually implemented as a global “yyval”. A nonterminal symbol value
appears in the grammar description file as $$. Its value is set by the
recognition action associated with the symbol’s definition. If the symbol’s
definition did not have an associated recognition action, the value of this
symbol is the value of the first item in the symbol’s definition.

The Shift action simultaneously pushes the current state onto the
state stack and the global “yyval” (the lookahead token) onto the value stack.

b. Action: Reduce one or more input tokens to a single nonterminal
symbol, according to a grammar rule

When the parser recognizes all the items that make up a non-
terminal symbol, the parser will take the Reduce action irrespective of what
the lookahead token will be. A Reduce action is the result of parser
recognizing the nonterminal symbol in a grammar rule.

The Reduce operation first pops several states off the state stack. If
the recognized nonterminal symbol had N components, the Reduce
operation pops N-1 states off the state stack. The parser actually goes back to
the state it was once in when it first began to gather the recognized
constructs.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

14

The value stack is modified next. If the grammar rule definition
being processed has N components, then a total of N values will be popped off
the value stack by the Reduce action. The symbols $N, $N-1, ..., all the way
down to $1 that usually show up in the grammar rule definition are assigned
theses values popped off the stack sequentially.

After assigning all the $N, $N-1, ..., $1 values, the Reduce action
invokes the recognition action associated with the grammar rule being
processed. The nonterminal symbol value represented by $$ is determined by
the values of $N-$1 and the grammar rule itself. The $$ value is then pushed
onto the stack as a replacement of the N values that were previously popped
off the value stack.

If there is no recognition action associated with the nonterminal, or if
the associated recognition action does not set the value $$, then the Reduce
action simply puts back the value $1 back on to the value stack. (Pactically,
$1 is simply not popped off the value stack in the first place)

The last clean up action performed by the Reduce action is to setup
the lookahead symbol such that it seems to be the nonterminal symbol that
was just recognized.

c. Action: Go to a new state

The Goto action is a continuation of the Reduce process. Goto
action is almost identical to the Shift action; the only difference is that the
Goto action takes place when the lookahead symbol is a nonterminal symbol
while a Shift takes place when the Lookahead symbol is a token.

While the Shift action pushes the current state onto the state stack,
the Goto action does not have to do this: The current state was on the state
stack already. Shift action also pushes a value onto the value stack, but
Goto action does not. This is because the Goto action happens after the
Reduce action and the value corresponding to the nonterminal symbol was
already put onto the value stack by the Reduce action. The destination state
was determined by the parsing table based on the current state and the
nonterminal symbol, and Goto action replaces the top of the state stack with
the destination state.

After the parser transitioned to the destination state, the current
Lookahead symbol is restored to whatever the current input token it was at
the time of the Reduce action.

Thus the essential difference between a Goto action and a Shift
action is that Goto action takes place when the parser goes back to a state
after the completion of the Reduction action while Shift action is based on
the current parser state. Also, a Shift action is based on the value of a single
current input token, whereas a Goto action is based on a nonterminal
symbol prepared by the Reduce action.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

15

d. Action: Accept the input

The Accept action is the successful end point of the parsing process.
It happens when the parser has processed all the input tokens correctly and
the parser has reduced all the grammar rules to the start symbol. When the
conditions for Accept action is true, the yyparse() function returns a zero to
the calling function indicating a successful parsing of the input token stream
according to the grammar rule descriptions.

e. Action: Find an error

The Error action is taken when the parser encounters encounters
any input token that cannot legally appear in a particular input location. The
parser usually canno do much to handle an input error except in extreme
cases. However, it is highly undesirable to stop processing of the input token
stream whenever an error is found. The more desirable behavior is for the
parser to skip over the incorrect input and resume parsing as soon as
possible. This is a much more efficient way of doing the parsing because the
parser can identify most syntax errors during just a single pass through the
input.

Most parser generators therefore tries to generate a parser that can
restart as soon as possible after an error condition occurs. YACC does this by
letting the user specify the points at which the parser should pick up after
errors. User can also specify the actions to takke whene an error is found at
those points.

The Error action has the following steps:

• See if the current state has a Shift action associated with the error
symbol. If it does, shift on this action.

• If there is no Shift action associated with the current state, then
pop the current state off the state stack and start checking the next
state. To sync the state stack and the value stack, the value at the
top of the value stack is also popped off.

• The previous step is repeated until the parser finds a state that has
an associated Shift action to shift on the error symbol.

• Once this state is found, the Shift action associated with the error
symbol taken. This pushes the current state on the stack - that is, the
state that can handle errors. No new value is pushed onto the value
stack; the parser keeps whatever value was already associated with
the state that can handle errors, which is already on the values
stack.

After the parser shifts out of the state that can handle errors, the
lookahead token is whatever token caused the error condition in the first
place. The parser then tries to proceed with normal processing.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

16

2. PCYDB Working Process

PCYDB accepts four different combinations of input files:

• Grammar Description Files (GDF) plus input source code, lexers are
hand written in the grammar description file (the lexer name has to
be yylex())

• GDF and SDF (Scan Description File) plus the input source code,
lexers are automatically generated by PCLEX

• Extended Grammar File (GDF and SDF combined in a single file)
plus the input source code

• GDF plus an file specifying an array of integers representing the
input token stream

PCYDB initializes internal parameters when invoked. Either specified
on the command line when invoking PCYDB or by issuing genstate at the
command prompt after invoking PCYDB, the grammar file is turned into the
parser code needed. Along with the parser generation, necessary lexer code is
also generated for obtaining tokens from input source code. This is
unnecessary if a binary token input stream is directly specified.

Once the user entered the commands to set the break points, ..., etc,
these break points are recorded internally in the PCYDB. When the user
then entered any command to start executing the parser, the actual parser
code is executed. Each time the parser completes one round of processing the
input token, it checks against certain internal records to find out if there is
any condition needs attention, e.g., breakpoints. If there is a break point, the
execution is temporarily halted awaiting the user’s command to continue.
When the execution is halted, internal states of the parser can be examined.
This includes the parsing tables, state stack, value stack and token streams.

If the grammar description file has been changed during the PCYDB
session, a genstate command can be used to regenerate the parsing tables
and the parser. The new parser can also be reloaded into PCYDB without
having to exit PCYDB. Debugging can now start from the beginning again on
the modified grammar file. This makes it much easier to debug the YACC
program.

PCYDB is different from the convention language debuggers that uses
the operating system debugging services by setting hardware breakpoints
and involving interrupt and exception handling routines. Instead PCYDB
uses the internal state of the parser program itself to set the break points,
etc. No interrupt and exception handing overhead is involved. Due to the
efficiency of the implemented LR parser, using the internal state of the
parser make PCYDB much faster than the conventional debuggers. It also
offers operating system independence which is a very desirable feature.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

17

 PCYDB

 LR Parser Token Stream

 Lexer

Grammar Description File Scan Description File

(GDF) (SDF)

Figure 3-1. PCYDB Interactions

Figure 3-1 shows the interaction between PCYDB and the LR parser
and various other components.

Source
Code

User

PCLEX PCYACC

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

18

IV. Using Text Version PCYDB
In this chapter, we will discuss how to start PCYDB, and how to get

out of it. The essentials are:

• type “pcydb” to start PCYACC debugger.

• type “quit” to exit from PCYACC debugger.

1. Invoking PCYDB

You can invoke PCYACC debugger by running the program pcydb.
Once started, PCYACC debugger reads in commands from the terminal until
you tell it to exit.

You can also run pcydb with a variety of arguments and options, to
specify more of your debugging environment. There are several ways to
define your PCYACC debugging environment with a variety of command line
options. The command-line options are described following.

The most usual way to invoke PCYACC debugger is to just type
“pcydb” without any options following:

pcydb

If command line options are specified, the format of it should be:

pcydb [-g <GDF filename with hand-written lexer>] [-i <Input Source Code>]

pcydb [-g <GDF filename>] [-s <SDF filename>] [-i <Input Source Code>]

pcydb [-e <Extended GDF filename>] [-i <Input Source Code>]

pcydb [-g <GDF filename>] [-t <Token Input Stream File>]

These four formats correspond to the four possible input file combinations
accepted by PCYDB. Not all the files need to be specified all on the command
line. Some or all of the options can be set after invoking PCYDB by issuing
various PCYDB commands.

Before start execution of the parser in the debug mode, however, a check is
made on the availability of the grammar description file, the scanner
description file plus the input source code or a token input stream file. If any
one of them is missing, the LR parser execution cannot be started correctly
and the debug process will not be successful. In this case, an error message
will be displayed asking user to input more information by issuing related
PCYDB commands before continuing.

2. Quitting PCYDB

To exit PCYDB after completing a debug session, type:

quit or q

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

19

command (abbreviated q). PCYDB will clean up all temporary files, and
terminate normally, displaying the terminal command prompt to the user
again.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

20

V. PCYDB Function
A PCYDB command is a single line of input. There is no limit on how

long it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For example, the
command breaktoken accepts one argument which is a token number, as in
“breaktoken 258”. However, some commands do not allow any argument like
step, which simply executes one step of the parsing process starting from the
current execution point.

Each PCYDB command has a corresponding abbreviation. All the
possible command abbreviations are listed below for each individual
command. A blank line as input to PCYDB does not mean to repeat the
previous command like other traditional debugger, since unintentional
repetition for some commands might cause trouble in the debugging session.

1. BREAKSTATE

Set breakpoint to a specified state number. Since the parser uses the
driver routine to consult the parsing table to switch between various states
during the process of getting a token from input stream, setting a breakpoint
at a particular state makes it possible to follow the execution of the parser
and check the internal variables maintained by the parser. This command
has one required argument statenumber. If this argument is missing, PCYDB
will display a warning to the user to indicate missing argument and no action
is taken by PCYDB.

Syntax format:

breakstate statenumber

Abbreviation:

bs statenumber

2. BREAKTOKEN

Set breakpoint at next specified token. PCYDB takes token integer
array as its input, and switches state according to the input token and
current state of the parser. By allowing a breakpoint when the parser sees a
particular token, user can again check the internal variables and states of
the parser to understand its operation. This command has one required
argument tokennumber. If this argument is missing, PCYDB will display a
warning to the user to indicate missing argument and no action action is
taken by PCYDB.

Syntax format:

breaktoken tokennumber

Abbreviation:

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

21

bt tokennumber

3. CLEARBREAK
This command clears all the break point set using the previous two

commands. It requires no argument. Error message will be displayed if any
additional argument is specified.

Syntax format:

clearbreak

Abbreviation:

cb

4. GENSTATE

Generate new state table based on the grammar input for PCYDB
debugger. PCYDB will create parsing tables, which is a required procedure
for parsing grammar. There are several ways that a grammar file can be
specified.

• Entered on command line according to one of the four formats
specified in the previous chapter. In this case, a check is made to
the input filenames to make sure both a GDF and a SDF (or
specified input token stream) do exist so that the parsing table can
be generated and will be able to execute.

• If no command line option has been specified for the GDF and SDF,
then use the command setgdf and setsdf to specify the GDF and
SDF files used for generating the parser.

This command first checks that all the necessary source files needed
for generating the parser have been specified using either method mentioned
above, it then generates the parsing tables and all internal data structures
for the parser and the parser will be ready to execute. Any file missing will
cause this command to fail and error message displayed to the user. The
parser is loaded into memory after this command is executed.

This command has no argument. Error message will be displayed if
any argument is specified along with the command.

Syntax format:

genstate

Abbreviation:

gs

5. GO

Start and continue execution of the parser until a break point or EOF
is hit. Input token stream has to be specified beforehand if no lexer is used.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

22

This is accomplished by issuing loadtoken command described later. Input
source file should be specified using loadsrc command if lexer is used. Also
the genstate command should already have been to generate the parser used
before issuing the go command. If any of these information is missing, then
PCYDB will display an error message alerting users of these errors.

This command needs no argument. Error message will be displayed if
any additional argument is specified when using this command.

Syntax format:

go

Abbreviation:

g

6. HELP

Display the help information on the usage of commands. This
command has no argument following. Error message will be displayed if any
additional argument is specified following this command.

Syntax format:

help

Abbreviation:

hp

7. INIT

Reset state to 0 (initial state) and corresponding initialization
condition for PCYDB. This command allows users to restart their debugging
process based on their working grammar. This command has no argument
following. If there is, PCYDB will issue warning message to indicate this
condition.

Syntax format:

init

Abbreviation:

i

8. LOADTOKEN

Load token integer array which will allow users to see the unprocessed
tokens left in the token input file or new token input to PCYDB. If this
command has one argument following, PCYDB will take it as new token
input. If there is no argument provided, PCYDB will simply display
unprocessed tokens left in the token input file. If there are more than one

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

23

argument, PCYDB will issue warning message to indicate this error
condition.

Syntax format:

loadtoken token-input-file or loadtoken

Abbreviation:

ldt token-input-file or ldt

9. LOADSRC
Specify the input source code file to use by the parser. This command

is needed when a lexer is used to scan an input source file. One argument is
needed for this command to specify the filename of the input source code.
Error message will be displayed if more no argument is present or more than
one argument is present.

Syntax format:

loadsrc input-source-code-filename

Abbreviation:
lds input-source-code-filename

10. QUIT

To exit PCYDB, use quit command. PCYDB will terminate the
execution and return to console command line. This command has no
argument following. If there is, PCYDB will issue warning message to
indicate this error condition.

Syntax format:

quit

Abbreviation:

q

11. SAVE

Save YACC states and tables into a specified file. This gives users
ability to post-analyze parsing process afterwards. Users have to provide file
name so that PCYDB can put states and parsing table information into it. If
there is no argument following, PCYDB will issue warning to indicate this
error condition.

Syntax format:

save file

Abbreviation:

sv file

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

24

12. SETGDF
Specify the Grammar Description File name used to generate the

parser. This command should be issued before genstate to make sure genstate
knows which GDF to use for generating the parser. One argument is needed
for this command to specify the filename of the GDF. Error message will be
displayed if no argument is present or more than one argument is present.

Syntax format:

setgdf gdf-filename

Abbreviation:

sg gdf-filename

13. SETSDF
Specify the Scan Description File name used to generate the lexer.

This command is only necessary if lexer is used. This command should be
issued before genstate to make sure genstate knows which SDF to use for
generating the lexer. One argument is needed for this command to specify the
filename of the SDF. Error message will be displayed if no argument is
present or more than one argument is present.

Syntax format:

setsdf sdf-filename

Abbreviation:
ss sdf-filename

14. STACK

Display stack information. This command will allow user to view both
state stack and value stack. There is no argument following, if there is,
PCYDB will issue warning to indicate this error condition.

Syntax format:

stack

Abbreviation:

stk

15. STATE

There are different tables related to parsing process. In order to know
all the aspect of parsing procedure, PCYDB has provided ability to allow
users to view all the tables generated by our YACC tool. This command could
have one argument, which is table name user wants to view, or, could have
no argument, which PCYDB simply display all the parsing tables. If there
are more than one argument following, PCYDB will issue warning to indicate
this error condition.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

25

Syntax format:

state table-name or state

Abbreviation:

st table-name or st

16. STEP

Step one token in execution, then stop execution and return control to
PCYDB. By invoking other PCYDB commands, you can examine parsing
process step by step. This command has no argument. If there is, PCYDB will
issue warning to indicate this error condition.

Syntax format:

step

Abbreviation:

stp

18. SYMBOL

Display token symbol names and their corresponding integer values
based on the grammar being parsed. It will help users to view tokens quickly.
This command does not have any argument. If there is, PCYDB will issue
warning to indicate this error condition.

Syntax format:

symbol

Abbreviation:

sbl

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

26

VI How to Use the Parse Tree
Parsing is the process of determining if a string of tokens can be

generated by a grammar. A parser must be capable of constructing the tree,
or else the translation cannot be guaranteed correct.

Although YACC’s parsing technique is general, you can write
grammars, which YACC cannot handle. It cannot handle with ambiguous
grammars, ones in which the same input can match more than one parse
tree.

In order to help users to check the ambiguity of their own grammar,
PCYDB provides “parsetree” command to display the parse tree for specified
grammar. “parsetree” command does the work just like what it means,
display the parse tree on the console based on the specified grammar.

The following will describe the necessary environment which PCYDB
needs to display the parse tree.

• grammar
Since a parse tree is constructed by YACC machine for a grammar, so

grammar has to be defined before you invoking “parsetree” command.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table and state stack for
displaying parse tree later.

type “genstate”
on the PCYDB command line to do preparation work for building parse tree.

After grammar and parsing table have been constructed, user can

invoke “parsetree” command to build it and display it on the console.
type “parsetree”

to display text-based graphical parse tree.
The following is an example of graphical representation for a parse

tree.
Assume that the infixel language grammar is defined as below:
infix_prog : infix_expr
 ;

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

27

infix_expr : infix_term
 | infix_expr ‘+’ infix_term
 ;
infix_term : infix_fact
 | infix_term ‘*’ infix_fact
 ;
infix_fact : CONSTANT
 ;

For the infixel program, the text-based graphical parser tree will be

constructed as following:
Infix_prog
 |
 +-------------------+
 | |
 infix_expr ‘;’
 |
 |--------------------+-------------------+
 | | |
 infix_expr ‘+’ infix_term
 | |
 infix_term +-------------------+---------------------+
 | | |

|
 infix_fact infix_term ‘*’

infix_fact
 | |

|
CONSTANT infix_fact

CONSTANT
 |
 CONSTANT

You can use PCYDB command abbreviation to finish corresponding

work. For more detailed information about PCYDB command, please check
related chapters as references.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

28

VII. How to Use the Parsing Stack

Actually, YACC machine uses driver routine to switch between

different states, and set state stack and value stack accordingly.
The state stack is the most important stack which YACC machine will

deal with. Any changes inside state stack should be related to parsing
process. So we should grant users ability to view these changes inside state
stack based on a string of tokens. PCYDB provides “stack” command to allow
user do this viewing.

However, there are some necessary environments user have to prepare
before seeing the parsing stack:

• grammar
Since a parse tree is constructed by YACC machine for a grammar, so

grammar has to be defined before you invoking “parsetree” command.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table and state stack for
displaying parse tree later.

type “genstate”
on the PCYDB command line to do preparation work for building parse tree.

After grammar and parsing table have been constructed, user can

invoke “stack” command to view stack state.
type “stack”

to display text-based parsing stack information on the console.
The text-based parsing stack information will be shown as below:
sm

Xm

sm-1

Xm-1

•••

s0

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

29

which sm is at top of state stack. Each Xi is a grammar symbol and each si is a
symbol called state. Each state symbol summarizes the information
contained in the stack below it, and the combination of the state symbol on
top of the stack and the current input symbol are used to index the parsing
table and determine the shift-reduce parsing decision.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

30

VIII. How to Use Conflict Parse Trees
There are context-free grammars for which shift-reduce parsing cannot

be used. Every shift-reduce parser for such a grammar can reach a
configuration in which the parser , knowing the entire stack contents and the
text input symbol, cannot decide whether to shift or to reduce (a shift/reduce
conflict), or cannot decide which of several reductions to make (a
reduce/reduce conflict). However, with further study we can eliminate
shift/shift as a possible candidate for conflict. This is because a shift is
essentially consuming the first terminal symbol in the input stream. If two
shifts content on the same terminal symbol, the two shift might be merged to
become a single shift operation.

Grammar ambiguities appear as two kinds of conflicts in LR parsers;
shift/reduce conflicts and reduce/reduce conflicts. A shift/reduce conflict
occurs when both a shift action and a reduce action are applicable in a
parsing step. For example, during parsing of the expression

5 + 5 * 2

Suppose you have executed the following:

NUMBER(5) ‘+’ NUMBER(5) ‘*’ NUMBER(2) �

expr (5) ‘+’ NUMBER(5) ‘*’ NUMBER(2) �

expr (5) ‘+’ expr (5) ‘*’ NUMBER(2) �

Now you have the expression in a parsing state. The parser stack contains
the following grammar symbol sequence:

expr ‘+’ expr

and the input stream becomes

‘*’ NUMBER(2)

You have a choice between using a shift operation to consume the terminal
symbol ‘*’, or performing a reduction on the grammar symbols on the stack
using

expr : expr ‘+’ expr

thus, a shift/reduce conflict occurs at this stage.

Similarly, a reduce/reduce conflict occurs when two of more grammar
rules are applicable simultaneously for a reduction operation in a parsing
step. For example, suppose you have a small programming language
described as follows:

%token NUMBER

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

31

%token IDENTIFIER

%token GOTO

%start program

%%

program : statement

 | program statement

 ;

statement : assign_st

 | goto_st

 | label_st

 | expr

 ;

assign_st : IDENTIFIER ‘=’ expr

 ;

goto_st : GOTO label

 ;

label_st : label

 ;

label : IDENTIFIER (*)

 ;

expr : expr ‘+’ expr

 | NUMBER

 | IDENTIFEIR (**)

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

32

 ;

This grammar exhibits a reduce/reduce conflict. The problem is caused
by the two grammar rules marked by (*) and (**). When the parser
encounters an IDENTIFIER, and it decides to do a reduction, it has difficulty
deciding which grammar rule should be used.

Based on the previous description about parser conflicts, it is necessary
for us to provide users ability to view the conflict parse tree.

Since we provide “parsetree” command to allow users to view the
parser tree, it is superfluous for PCYDB command “conflictparsetree” to
display the entire parse tree with conflicts marked up. Due to the fact that
users only care about the conflicts at this time, so we’d better give them a
simple and straight view regarding the conflicts happened in the specified
grammar.

The PCYDB command to display conflict parse tree is
“conflictparsetree”. The following will describe the necessary environment
which PCYDB needs to display the grammar conflicts.

• grammar
Since a parse tree is constructed by YACC machine for a grammar, so

grammar has to be defined before you invoking “parsetree” command.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table and state stack for
displaying parse tree later.

type “genstate”
on the PCYDB command line to do preparation work for building parse tree.

After grammar and parsing table have been constructed, user can

invoke “conflictparsetree” command to build parse tree and display its
conflicts on the console.

type “conflictparsetree”
to display text-based graphical conflict parse tree.

Example will be inserted in later.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

33

IX. How to Use Grammar Rule Matches

Although PCYDB can allow users to view parsing stack, however,

seeing grammar rule matches is more straight for users to debug their own
grammars. So PCYDB provides users another command “rulematch”, which
could display the content of matching grammar rules on the console based on
the string of tokens. The every action regarding this token input handled by
parser will be displayed also. By using “rulematch” command, the real tracing
of parser process can be fulfilled.

However, there are some necessary environments user has to prepare
before seeing grammar rule matches:

• grammar
Since a parse tree is constructed by YACC machine for a grammar, so

grammar has to be defined before you invoking “rulematch” command.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table for displaying grammar rule
matches.

type “genstate”
on the PCYDB command line to do preparation work for viewing grammar
rule matches.

• token input string
Since token input string is actually input for parser which we are

tracing, we have to define an input for parser, which can feed PCYDB driver
routine to shift between different states.

The token input string can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets both user defined grammar file and token input file.

or
type “loadtoken token-input”

to redefine new token input string.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

34

At above both two circumstances, a token input for parser has been
defined adequately by user through PCYDB command

• execute parser
PCYDB provides users ability to examine parser process only after

user starts parsing token input. There are two ways to invoke parser
execution.

(1). type “go”
to start parsing process until a breakpoint or EOF is hit.

(2). type “breakstate”
or
type “breaktoken”

to set up breakpoint for PCYDB. Then
type “go”

to start parsing process until a breakpoint is hit.

If you follow the procedures we mentioned above, it is time to invoke

another PCYDB command “rulematch” to watch grammar rule matches.
type “rulematch”

to inform PCYDB to display text-based grammar rule matches.
Example will be provided later.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

35

X. How to Use Regular Expression
Matches

Since by now we only consider integer array as token input for parser,
there is actually no difference between regular expression and regular file as
input to parser. So, user can follow the same procedure in the previous
chapter to view regular expression matches.

More detailed information will be filled in later.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

36

XI. How to Control the Flow of Your Input
Data

Just like other traditional debuggers, PCYDB can give you ability to

stop parsing process at any point, examine parsing table and “single step”
through input data. User can use some PCYDB commands to control the flow
of your input data.

However, there are some necessary environments user has to prepare
before controlling the flow of your input data:

• grammar
Since a parser is constructed by YACC machine based on a grammar,

so you have to define grammar before you can start parser debugging process.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table for debugging process.
type “genstate”

on the PCYDB command line to do preparation work for controlling the flow
of your input data.

• token input string
Since token input string is actually input for parser which we are

tracing, we have to define an input for parser, which can feed PCYDB driver
routine to shift between different states.

The token input string can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets both user defined grammar file and token input file.

or
type “loadtoken token-input”

to redefine new token input string.
At above two circumstances, a token input for parser has been defined

adequately by user through PCYDB command.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

37

Now, token input string, grammar we are going to examine and
parsing table have been built up. From now on, user can run the parsing
process associated with adequate PCYDB commands to control the flow of
your input data. Actually, there are two ways to reach your goal:

(1). type “step”
to step through one token in execution at a time.

(2). type “breakstate”
or
type “breaktoken”

to set up breakpoint for PCYDB. Then
type “go”

to start parsing process until a breakpoint is hit.
By combining two ways we mentioned above, you can control the flow

of your input data in the way what you like. You can single-step or transfer
control to the specific state or token to view the flow of your token input data.

Example will be provided later.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

38

XII. How to Use Parsing Tables

Since parser uses driver routine to drive parsing table to shift between

different states, these tables are playing most important role in syntax
parsing.

Since we cover theory of LR parser in previous chapter, in order to
make easy for users to understand how driver routine manipulate parsing
table rather than let them figure out by themselves, we will provide a real
example which is based on the previously used grammar in LR parser theory
section. The grammar we used in this example is the same as before, which is
defined as following:

()
()
() *
()
(5) ()
()

1
2
3
4

6

E E T
E T
T T F
T F
F E
F id

→ +
→
→
→
→
→

Based on this grammar, Abraxas’s YACC machine will generate its
own parsing tables named, yyexca, yyact, yypact, yypgo, yyr1, yyr2,
yychk and yydef. Each of them is defined as const int *. By referring
different table entries on state number and one lookahead token, YACC can
uniquely decide one type of action if the grammar is LR grammar. The
parsing tables created by Abraxas’s YACC is shown below:

const int yyexca[] = {
 -1, 1,
 0, -1,
 -2, 0,
 0,
};

const int yyact[] = {
 4, 6, 11, 3, 6, 7, 2, 1,
 0, 0, 0, 10, 8, 9, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

39

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 5,
};

const int yypact[] = {
 -40, -42, -37, -4096, -40, -4096, -40, -40,
 -39, -37, -4096, -4096,
};

const int yypgo[] = {
 0, 7, 6, 3,
};

const int yyr1[] = {
 0, 1, 1, 2, 2, 3, 3,
};

const int yyr2[] = {
 0, 3, 1, 3, 1, 3, 1,
};

const int yychk[] = {
 -4096, -1, -2, -3, 40, 257, 43, 42,
 -1, -2, -3, 41,
};

const int yydef[] = {

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

40

 0, -2, 2, 4, 0, 6, 0, 0,
 0, 1, 3, 5,
};

Where it is parsing tables after optimization by YACC.
If we use “id*(id+id)” as token input for this parser and would like to

use parsing table to tracing input parsing, the whole procedures users have
to follow are described following:

There are some necessary environments user has to prepare before
start tracing parsing process by using parsing table

• grammar
Since a parser is constructed by YACC machine based on a grammar,

so you have to define grammar before you can start parser debugging process.
The grammar can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets user defined grammar file and token input file.

or
type “loadstate grammar”

to redefine new user grammar .
At above both two circumstances, a specified grammar has been

defined adequately by user through PCYDB command.
• parsing table
Since parsing table has been built after PCYDB executes genstate, so

user must invoke genstate to build parsing table for debugging process.
type “genstate”

on the PCYDB command line to do preparation work for controlling the flow
of your input data.

• token input string
Since token input string is actually input for parser which we are

tracing, we have to define an input for parser, which can feed PCYDB driver
routine to shift between different states.

The token input string can be defined in several ways:
type “pcydb grammar token-input”

on the command line to start PCYDB program and at the same time, PCYDB
gets both user defined grammar file and token input file.

or
type “loadtoken token-input”

to redefine new token input string.
At above two circumstances, a token input for parser has been defined
adequately by user through PCYDB command.

• execution
Before execute your parser, you can use PCYDB states command:
type states

to display all the parsing tables, or

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

41

type states table-name
to show individual table only.

If we really want to see how YACC driver routine drive tables, we have
to execute parser we are working on in several different ways:

• type “step”
to step through one token in execution at a time. The information about how
parsing table can be accessed is display accordingly. Please check following
for more detailed accessing table information.

• type “breakstate”
or
type “breaktoken”

to set up breakpoint for PCYDB. Then
type “go”

to start parsing process until a breakpoint is hit. The parsing table access
information is displayed on the console afterwards.

In order to make parsing table access clear, we will use token input
string (id*(id+id)) we mention before to generate detailed accessing
information for users. After run PCYDB go command, the following
information will be displayed on the console.

at state 0, next token -1
 yypact[0]=-40, yyact[-40+257]=5,
at state 5, next token 257
 yypact[5]=-4096, yydef[5]=6,
reduce with rule 6
 yyr1[6]=3, yypgo[3]=3, yyact[3]=3,
at state 3, next token 257
 yypact[3]=-4096, yydef[3]=4,
reduce with rule 4
 yyr1[4]=2, yypgo[2]=6, yyact[6]=2,
at state 2, next token 257
 yypact[2]=-37, yyact[-37+42]=7,
at state 7, next token 42
 yypact[7]=-40, yyact[-40+40]=4,
at state 4, next token 40
 yypact[4]=-40, yyact[-40+257]=5,
at state 5, next token 257
 yypact[5]=-4096, yydef[5]=6,
reduce with rule 6
 yyr1[6]=3, yypgo[3]=3, yyact[3]=3,
at state 3, next token 257
 yypact[3]=-4096, yydef[3]=4,
reduce with rule 4
 yyr1[4]=2, yypgo[2]=6, yyact[6]=2,

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

42

at state 2, next token 257
 yypact[2]=-37, yyact[-37+43]=2,yychk[2]=-2, yydef[2]=2,
reduce with rule 2
 yyr1[2]=1,
at state 8, next token 257
 yypact[8]=-39, yyact[-39+43]=6,
at state 6, next token 43
 yypact[6]=-40, yyact[-40+257]=5,
at state 5, next token 257
 yypact[5]=-4096, yydef[5]=6,
reduce with rule 6
 yyr1[6]=3, yypgo[3]=3, yyact[3]=3,
at state 3, next token 257
 yypact[3]=-4096, yydef[3]=4,
reduce with rule 4
 yyr1[4]=2,
at state 9, next token 257
 yypact[9]=-37, yyact[-37+41]=6,yychk[6]=43, yydef[9]=1,
reduce with rule 1
 yyr1[1]=1,
at state 8, next token 257
 yypact[8]=-39, yyact[-39+41]=11,
at state 11, next token 41
 yypact[11]=-4096, yydef[11]=5,
reduce with rule 5
 yyr1[5]=3,
at state 10, next token 41
 yypact[10]=-4096, yydef[10]=3,
reduce with rule 3
 yyr1[3]=2, yypgo[2]=6, yyact[6]=2,
at state 2, next token 41
 yypact[2]=-37, yydef[2]=2,
reduce with rule 2
 yyr1[2]=1, yypgo[1]=7, yyact[7]=1,
at state 1, next token 41
 yypact[1]=-42, yydef[1]=-2,
By contrasting demonstrative parsing table in Figure 2-3, the real

driven behaviors of driver routine for parsing table generated by Abraxas’s
YACC machine will be displayed like following. The initial state and
lookahead token are defined 0 and –1 respectively. The index for yypact is
state number 0. Since parser first enters initialization stage, the default
initialization for state number is 0, and first token would be –1. Yacc will
consult yypact table for pointer to action table with index state 0. Based on

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

43

lookahead token(257) and pointer index(-40), the parsing move will go to
state 5. Each of the remaining moves is determined similarly.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

44

XIII. PCYPP – Handle Preprocessor and
Comment in Integration of GDF and SDF

In the real programming world, some programmers like to put

GDF(Grammar description file) and SDF(scanner description file) together so
that they can only worry about one file regarding parsing process. Since we
only provide stand-alone YACC and LEX generator and they are very robust
after putting them onto market more than fifteen years, it’d better for us to
create a tool which can break *.ey (putting GDF and SDF together) file into
separate parser and lexer files, then by using PCYACC and PCLEX
mechanism to generate stand-alone lexer and parser. The detailed control
flow graph is shown up in Figure 14-1.

 Lexer Generator
 output

 input Parser Generator

 output

Figure 14-1. PCYPP control flow chart

The basic functionality includes the following features:

• separate *.ey file into *L.l and *Y.y files.

• support minimum preprocessor

• support comment inside GDF and SDF

1. Separate *.ey file into *L.l and *Y.y files
The input for YACC machine actually has three cases:
(1). Stand-alone grammar file, whose parser is generated by parser

generator and whose lexer is hand-coded, not created by lex generator.
(2). Pure hand-coded parser, which is not created by parser generator.
(3). Extended grammar file, which includes both GDF and SDF.
Our PCYACC only works for the first case, which takes grammar

description file as input, and generated C parser based on the GDF
automatically. You can refer PCYACC manual about how to use Abraxas’s
PCYACC to generate C parser. The pure hand-coded parser in the second
case does not need any parser generator, it does not belong to our discussion
range. In this section, we are only concerning the third case, in which the
GDF and SDF are put inside the single extended grammar file *.ey.

Since *.ey is so called extended grammar file, which definitely has its
own special format, so it is necessary for us to define its internal file format

 *.ey

 *Y.y

 *L.c *L.l

 *Y.c

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

45

first. The core of extended grammar file is also GDF. The difference is that
SDF has been built in. In order to handle the extra part(SDF) comparing to
normal GDF, a special care must be done for SDF part inside extended
grammar file. An example of extended grammar file is given as below:

%{
#define YYSTYPE double /* data type of yacc stack */
#define YYDEBUG
%}

L{
#include <stdio.h>

}L

%token
 ID

%left '+' '*'
%left '(' ')'

L{

letter [a-zA-Z_]
alphanum [a-zA-Z_^0-9]

%%
{letter}{alphanum}* return search();

}L

%start E

%%

E : E '+' T
 | T
 ;

T : T '*' F
 | F
 ;

F : '(' E ')'
 | ID

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

46

 ;

%%

#include <stdio.h>
#include <ctype.h>

char *progname; /* for error messages */
int yylineno = 0;

extern int yyparse(void);

void main(int, char **);
void yyerror(char *);
void warning(char *s, char *t); /* print warning message */

FILE *yyin; /* pointer to input stream */
char yyerrsrc[64]; /* input filename */

extern int yyerrcnt; /* count of errors, defined in err_skel.c */

void main(int argc, char *argv[])
{

 if (argc<2)
 {
 fprintf(stderr, "\nPCYACC (R) is a software product of ABRAXAS

SOFTWARE INC.\n");
 fprintf(stderr, "Copyright (C) 1986-1997 by ABRAXAS SOFTWARE

INC.\n\n");
 fprintf(stderr,"Usage : tt <program>\n");
 exit(1);
 }

 yyin=fopen(argv[1],"rw");
 if (yyin==0)
 {
 fprintf(stderr,"Can't open source program file %s\n", argv[1]);
 exit(1);
 }

 strcpy(yyerrsrc,argv[1]);

 yylineno=1;

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

47

 yyparse();
 fclose(yyin);

 if (yyerrcnt!=0)
 {
 fprintf(stderr,"%d error%s found by the

parser\n",yyerrcnt,(yyerrcnt==1)?"":"s");
 }
 else
 {
 fprintf(stdout,"No syntax error was found by the parser\n");
 }
 exit(0);
}

void
yyerror(char *s) /* called for yacc syntax error */
{
 warning(s, (void *) 0);
}

void
warning(char *s, char *t) /* print warning message */
{
 fprintf(stderr, "%s: %s", progname, s);

 if (t) fprintf(stderr, " %s", t);

 fprintf(stderr, " near line %d\n", lineno);
}

L{

%%
int search(void)
{
 return ID;
}

}L

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

48

For every element of SDF, we will use delimiter “L{“ as start mark, “}L” as
end mark. PCYPP will search for these delimiters to strip out those two files
from single extended grammar file.

2. Support minimum preprocessor
The YACC preprocessor is a simple macro preprocessor that processes

the extended grammar file before PCYACC or PCLEX read in the source
programs. The PCYPP is actually a separate program that reads the original
extended grammar file and writes out a new “preprocessed” source file that
can then be used as input to PCYACC and PCLEX.

Preprocessor directives are typically used to make source program to
change and easy to execute under different environments. Directives in the
source file tell the preprocessor to perform specific actions. The preprocessor
is controlled by special preprocessor command lines, which are lines of the
source file beginning with the character #. The preprocessor statements use
the same character set as source file statements, with the exception that
excape sequences are not supported.

Abraxas’s preprocessor currently recognizes the following directives:

#endif #ifdef
#ifndef #else

The number sign (#) must be the first nonwhite-space character on the line
containing the directives; white-space characters can appear between the
number sign and the first letter of the directives just like C language.

Figure 14-2 describes the YACC preprocessor supported by Abraxas.

#endif Terminate conditional text.
#ifdef Conditionally include some text, based on

whether a macro name is defined.
#ifndef Conditionally include some text, with the sense

of the test opposite that of #ifdef.
#else Alternatively include some text, if the previous

#ifdef or #ifndef test failed.
Figure 14-2. Preprocessor commands

The syntax of preprocessor commands is completely independent of the
syntax of the rest of the extended grammar file. The syntax for these
preprocessors is shown as following:

Syntax:
 conditional-directive:
 if-part else-partopt endif

 if-part:
 if text

 if:

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

49

 #ifdef identifier
 #ifndef identifier

 else-part:
 else text

 else:
 #else

 endif:
 #endif
Each #ifdef directive in source file must be matched by a closing

#endif directive. At most one #else directive is allowed. The #else directive,
once present, must be the last directive before #endif.

The #ifdef, #else and #endif directives can nest in the text portions
of other directives. Each nested #else or #endif directive belongs to the
closest preceding #ifdef directive.

An error message is generated by PCYPP if the conditional directive
#ifdef does not matched with the closing #endif directive prior to the end of
file.

The preprocessor selects the text items by evaluating the identifier
following #ifdef until it finds this identifier has been defined prior. Then all
the text item up to the nearest #endif, or #else has been chosen and passed
it to YACC or LEX.

If the identifier is not defined before, PCYPP will select #else text
block. If there is no #else block, no text item will be passed to YACC and
LEX.

If the identifier followed #ifndef is not defined prior, PCYPP will
select #ifndef text block up to nearest #else or #endif directive.

For example:
/* illustrate #ifdef usage */
%{
#define MULTIPLE
%}
••• •••
%start program
%%
program : expr operator expr
 ;
expr : NUM
 ;
#ifdef MULTIPLE
operator : ‘*’
 ;

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

50

#else
operator : ‘+’
 ;
#endif

Since we define macro MULTIPLE in the user declaration section, the actual
grammar rule portion passed to YACC will be:

program : expr operator expr
 ;
expr : NUM
 ;
operator : ‘*’
 ;
By providing preprocessor for YACC and LEX generators, users can

temporarily change grammar rule or lexing rule and benefit from
convenience in switching between different rules from preprocessor.

2. Support comment inside GDF and SDF
In normal GDF and SDF, comment is only allowed inside C text

source, which means PCYACC and PCLEX does not support comment. Every
text item which will be passed to YACC or LEX machine is comment-free.
However, it is necessary that we have to provide an ability to let users put
comments inside lexing and parsing rules, which will make GDF and SDF
more readable.

In order to compatible with ANSI C and C++, Abraxas uses two kinds
of comment:

/* text */ A traditional comment: all the text from the ASCII
character set /* to the ASCII characters */ is
ignored (just like C and C++).

// text A single-line comment: all the text from the ASCII
character set // to the end of this line is ignored
(just like C++).

Comments can appear anywhere a white-space character is allowed.
PCYPP will treat comments like white-space, simply skip them. However,
there are some restrictions applied to comments.

• Comment does not nest each other.
For example,
/* text1 /* text2 */ */

is not allowed.
• /* and */ have no special meaning in comments that begin with //.
Any text after // sign will be ignored. There is no exception for /* and */

text portion. For example,
// text1 /* text2 */

PCYPP will treat them as white-spaces and ignore the whole line.
• // has no special meaning in comments that begin with /* or /**.
For example:

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

51

/* text1 /* // text2 */
is a single comment line which PCYPP will totally ignore.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

52

XIV. Using GUI Version PCYDB

Since Visual PCYACC is a visual developing and debugging

environment for Rapid Application Development (RAD) of general purpose for
Microsoft Windows 95 and Windows NT, all the PCYDB functionalities we
mentioned before will be included in Visual PCYACC application. In this
chapter, we will mainly describe how to use Visual PCYACC to debug
parser program.

The prototype for VISUAL PCYACC is described below: The main

toolbar has several entries:
File:
 New Ctrl+N
 Open Ctrl+O
 Close
 Save Ctrl+S
 Save As
 Print Ctrl+P
 Exit
Edit:
 Undo Ctrl+Z
 Redo Ctrl+Y
 Cut Ctrl+X
 Copy Ctrl+C
 Paste Ctrl+V
 Delete Del
 Select All Ctrl+A
 Find Ctrl+F
 Replace Ctrl+H
 Go To Ctrl+G
View:
 Parse Tree
 Conflict Parse Tree
 Rule Matches
 Parsing Table
 Token
 Symbol
Debug:
 Create Parsing Table
 Go
 Init
 Step
Build:
 Create Parser

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

53

Source:
 Grammar Description File
 Scanner Description File
 Extended Grammar Description File
 Expression
Insert:
 State Breakpoint
 Token Breakpoint
Window:
 Split
 Hide Shift+Esc
 Cascade
 Tile Horizontally
 Tile Vertically
 Close All
Help:
 About Visual PCYACC

1. Invoking GUI PCYDB
On the command line, please type:
VPCYACC or
vpcyacc

A visual YACC working environment has been set up with title bar, main
menu and toolbar displayed as Graphical User Interface Representation.

a. Select description source files for YACC Debugger
• Choose Source.
• Select Grammar Description File in Source pop-up menu.
A File Dialog Box will appear, which user can select GDF among files

accessible from your system.
• Select Scanner Description File in Source pop-up menu.
A File Dialog Box will appear, which user can select SDF among files

accessible from your system.
or
• Select Extend Grammar Description File in Source pop-up

menu.
A File Dialog Box will appear, which user can select Extended

Grammar File among files accessible from your system (Be sure extended
grammar file has integrated with both GDF and SDF).

b. Select input source file for YACC debugger
There are two kinds of input source for Visual PCYACC: Regular

Expression and Input Source File.
• Choose Source.
• Select Regular Expression in Source pop-up menu.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

54

or
• Choose Source.
• Select Input source File in Source pop-up menu.
A File Dialog Box will appear, which user can select regular expression

or input source file among files accessible from your system.

c. Setting State Breakpoint for YACC Debugger
• Choose Insert.
• Select State Breakpoint in Insert pop-up menu.
Grammar Description File will be displayed. By using left mouse

button, user can choose the location where a state breakpoint will be
inserted.

d. Setting Token Breakpoint for YACC Debugger
• Choose Insert.
• Select Token Breakpoint in Insert pop-up menu.
Regular expression or input source file will be displayed. By using left

mouse button, user can choose the location where a token breakpoint will be
inserted.

e. Single-Step Execution
• Choose Debug.
• Select Step in Debug pop-up menu to single-step a state or token.
Whether single-step a state or a token depends on the last breakpoint

setting whether it is state breakpoint or token breakpoint.
Be sure you have set either state breakpoint or token breakpoint.

If you do not, an error message will be shown up in error message box to
warn you a corresponding setting.

f. Execute Until a Breakpoint or EOF Is Hit
• Choose Debug.
• Select Go in Debug pop-up menu to execute until a breakpoint or

EOF is hit.
No match what the last breakpoint is, if you select Go command,

program will execute until a breakpoint or EOF is hit.
Be sure you have to define GDF and SDF, or extended grammar file, a

input stream either regular expression or input source file also has to be set
for Visual PCYACC. Otherwise, an error message will be displayed in an
error message box to warn you these misusage.

g. Restart YACC Debugger
• Choose Debug.
• Select Init in Debug pop-up menu to initialize state stack and all

variables regarding YACC debugger.
This command really resets all the variables related to parser itself.

1. Quitting GUI PCYDB
• Choose File menu.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

55

• Select Exit in File pop-up menu to quit VISUAL PCYACC.
or
Simply switch to developing environment.

2. How to Use the Parse Tree
• Choose View menu.
• Select Parse Tree in View pop-up menu.
Be sure GDF and SDF, or extended grammar file has to be defined

previously. Please refer “Invoking GUI PCYDB” section for more detailed
about how to define these input files under Visual PCYACC environment.

If there is no GDF and SDG, or extended grammar file has been
defined, an error message will be shown up in error message box to warn you.

3. How to Use the Parsing Stack
• Choose View menu.
• Select Parsing Stack in View pop-up menu.
Be sure GDF and SDF, or extended grammar file has to be defined

previously. Please refer “Invoking GUI PCYDB” section for more detailed
about how to define these input files under Visual PCYACC environment.

If you do not start invoking debugging mechanism, the default initial
parsing stack will be displayed. If you are on the mid-way in the process of
debugging, the current parsing stack content will be displayed accordingly.

4. How to Use Conflict Parse Trees
• Choose View menu.
• Select Conflict Parse Tree in View pop-up menu.
Be sure GDF and SDF, or extended grammar file has to be defined

previously. Please refer “Invoking GUI PCYDB” section for more detailed
about how to define these input files under Visual PCYACC environment.

If you do not start invoking debugging mechanism, an error message
will be shown up in error message box to warn you.

If your grammar does not involve ambiguous items, the parse tree will
be displayed with information “No Conflict Involved in Your defined
Grammar”.

If your grammar does involve ambiguous items, the conflict parse tree
will be shown up, which is part of whole grammar parse tree.

5. How to Use Grammar Rule Matches
• Choose View menu.
• Select Rule Matches in View pop-up menu.
Be sure GDF and SDF, or extended grammar file has to be defined

previously. Please refer “Invoking GUI PCYDB” section for more detailed
about how to define these input files under Visual PCYACC environment.

Also either regular expression or input source file has to be define
early. Otherwise, an error message will be shown up in error message box to
warn you this misusage.

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

56

After you execute your program by using single-step or go command,
there are text-window shown up, which displays all the grammar rule
matches based on the input stream you defined before.

If you do not choose either single-step or go command, an error
message will show up to warn you execute program before active grammar
rule matches function.

6. How to Use Regular Expression Matches
Detail will be filled later.

7. How to Control the Flow of your Input

8. How to Use Parsing Tables
• Choose Debug.
• Select Create Parsing Table in Debug pop-up menu.
Be sure GDF and SDF, or extended grammar file has to be defined

previously. Otherwise, an error message will show up in error message box to
warn you this misusage. Please refer “Invoking GUI PCYDB” section for
more detailed about how to define these input files under Visual PCYACC
environment.

After you select Create Parsing Table under Debug pop-up menu,
all the parsing tables will be displayed in a window.

9. Conclusion

PCYDB -PCYACC DEBUGGER • First Draft • Printed – March 18, 1997

57

	I. OVERVIEW
	II. LR Bottom-Up Parser
	1. Definitions and Introductions
	2. LR Bottom-up Parser
	3. Example

	III. How PCYDB Works
	1. States
	2. State Actions
	a. Action: Shift to a new state
	b. Action: Reduce one or more input tokens to a single nonterminal symbol, according to a grammar rule
	c. Action: Go to a new state
	d. Action: Accept the input
	e. Action: Find an error

	IV. Using Text Version PCYDB
	1. Invoking PCYDB
	2. Quitting PCYDB

	V. PCYDB Function
	1. BREAKSTATE
	2. BREAKTOKEN
	3. CLEARBREAK
	4. GENSTATE
	5. GO
	6. HELP
	7. INIT
	8. LOADTOKEN
	9. LOADSRC
	10. QUIT
	11. SAVE
	12. SETGDF
	14. STACK
	15. STATE
	16. STEP
	18. SYMBOL

	VI How to Use the Parse Tree
	VII. How to Use the Parsing Stack
	VIII. How to Use Conflict Parse Trees
	IX. How to Use Grammar Rule Matches
	X. How to Use Regular Expression Matches
	XI. How to Control the Flow of Your Input Data
	XII. How to Use Parsing Tables
	XIII. PCYPP – Handle Preprocessor and Comment in Integration of GDF and SDF
	1. Separate *.ey file into *L.l and *Y.y files
	2. Support minimum preprocessor
	Support comment inside GDF and SDF

	X
	XIV. Using GUI Version PCYDB
	Invoking GUI PCYDB
	Select description source files for YACC Debugger
	b. Select input source file for YACC debugger
	Setting State Breakpoint for YACC Debugger
	Setting Token Breakpoint for YACC Debugger
	Single-Step Execution
	Execute Until a Breakpoint or EOF Is Hit
	Restart YACC Debugger

	Quitting GUI PCYDB
	How to Use the Parse Tree
	How to Use the Parsing Stack
	How to Use Conflict Parse Trees
	How to Use Grammar Rule Matches
	How to Use Regular Expression Matches
	How to Control the Flow of your Input
	How to Use Parsing Tables
	Conclusion

